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1 Introduction

NASA is engaged in a major research effort towards the development of a practical validation

and verification methodology for digital fly-by-wire control systems. 1 Researchers at NASA

Langley Research Center (LaRC) are exploring formal w._rification as a candidate technology

for the elimination of design errors ill such systems. In previous reports [1, 2, 3], we put

forward a high level architecture for a reliable compuling platform (RCP) based on fault-

tolerant computing principles. Central to this work is the use of formal methods for the

verification of a fault-tolerant operathlg system that schcdules and executes the application

tasks of a digital flight control system. Pha._e I of this effort established results about the

high level design of RCP. This report prcseats our Phase 2 results, which carry the design,

specification, and verification of RCP to lower lcveIs of abstraction.

The major goal of this work is to produce a verified real-time computing platform, both

hardware and operating system software, which is useful for a wide variety of control-system

applications. Toward this goal, the operating system provides a user interface that "hides"

thc implementation details of the system such as the redundant proccssors, voting, clock

synchronization, etc. We adopt a very abstract model of real-time computation, introduce

threc levels of decomposition of the model towards a physical realization, and rigorously

prove that the decomposition correctly implements the model. Specifications and proofs

have been mechanized using the EtlDM verification system [4].

A major goal of the RCP design is to enable the system to recover from the effects of

transient faults. More than their analog predecessors, digital flight control systems are vul-

nerable to external phenomena that can temporarily affect the system without permanently

damaging the physical hardware. External phenomena such as electromagnetic interference

(EMI) can flip the bits in a processor's - mcm()ry ()r temporarily affect an ALU. EMI can

come from many sources such as cosmic radiation, Jightning or High Intensity Radiated

Fields (IIIRF). There is growing concern over the effects of ItIRF on flight control systems.

In the FAA Digital Systems Validation llandbook - volume II [5], we find:

A number of European military aircraft fatal accidents have been attributed to

High Energy Radio Frequency (ItERF). _ A digital fly-by-wire military Tornado

aircraft and crew were lost during a tactical training strafing attack in Germany.

The loss was attributed to III'3RF when the aircraft flew through a high intensity

Radio Frequency (RF) ficl(I. Thc civil/military aviation industry has very limited

experience or data directed to accidents caused by elcctromagnetic transients

and/or radiation. The present criteria, specifications, and procedures are being

reevaluated. The tlERF fields apparently upset the digital flight control system

of the Tornado which was qualified to a very low electromagnetic Environment

(EME) standard.

While composite materials may offer significant advantages in strength, weight,

and cost, they provide less electromagnetic shiciding than aluminum. The use

Iln fly-by-wire aircraft the direct nmchanicaI and hydraulic linkages between the pilot and actuators of
the system are replaced with digital computers. 'Fbese digital computers are being used to control life critical
functions such a.s the engines, sensors, fuel systems and actuators.

2Thc term IIERF has largely been replaced in current usage by the newer term [IIRF.



of solid-state digital technology in flight-critical systems create major challenges

to prevent transient susceptibility and upset in both civil and military aircraft.

Therefore, the Civil Aviation Authority (CAA), United Kingdom (U.K.) and

the Federal Aviation Administration (FAA), United States (U.S.) voiced concern

relative to emerging technology aircraft and systems.

'Fl!e RCP system is designed to automatically flush tile effects of transients periodically, as

long as the effect of a transient is not ma.ssiw,, that is, simultaneously affecting a majority

of the redundant processors ill the system. 3 Of course, thcre is no hope of recovery if the

system designed to overcome transient faults contains a design flaw. Consequently, a major

emphasis in this work has been the development of techniques that mathematically show

when the desired recovery properties have been achieved. The advantages of this approach

are significant:

Confidence in the system does not rely primarily on end-to-end testing, which can

never establish the absence of some rare. design flaw (yet more frequent than 10 -9 [6])

that can crash the system [7].

Minimizes the need for experimental analysis of the effects of EMI or ItlRF on a digital

processor. The probability of occurrence of a transient fault must be experimentally

determined, but it is not necessary to obtain detailed information about how a transient

fault propagates errors in a digital processor.

The role of experimentation is determined by the assumptions of the mathematical

verification. The testing of the system can be concentrated at the regions where the

design proofs interface with the physical implementation.

1.1 Design of the Reliable Computing Platform

Traditionally, the operating system function in flight control systems has been implemented

as an executive (or main program) that invokes subroutines implementing the application

tasks. For ultra-reliable systems, the additional responsibility of providing fault tolerance

and undergoing validation makes this approach questionable. We propose a well-defined

operating system that provides the applications software developer a reliable mechanism for

dispatching periodic tasks on a fault-tolerant computing be_se that appears to him as a single

u ltra-re[iable processor.

Our system design objective is to minimize the amount of experinaental testing required

and maximize our ability to reason mathematically about correctness. The following design
decisions have been made toward that end:

• the system is non-reconfigurable

• the system is frame-synchronous

• the scheduling is static, non-preemptive

• internal voting is used to recover the state of a processor affected by a transient fault

3Future work will concentr;d,e on the rna.ssive transient and techniques to detect and restart a massively

upset system.



[lhniproccssor System Model (US)]

[ Fault-tolerald Replicated Syochronous Model (RS) ]

f
IFault-tol,, ra.t Distributed Synchronous Model (DS)]

I
[Fault-tolerant Distributed Asynch,'onous Model (DA)I

Hardware//Software lmplemcntation]

Figure 1: tlierarchical Specification of the Reliable Computing Platform.

A four-level hierarchical decomposition of the relial)le computing platform is shown in fig-

ure I.

The top level of the hierarchy describes the operating system as a function that sequen-

tially invokes apl)lication tasks. This view of the operating system will be referred to as the

uniprocessor model, which is formalized as a state transition system in section 3.2 and forms

the basis of the specification for the RCP.

Fault tolerance is achieved by voting results computed by the replicated processors op-

erating on the same inputs. Interactive consistency checks on sensor inputs and voting of

actuator outputs require synchronization of the replicated processors..The second level in

the hierarchy describes the operating system as a synchronous system where each replicated

processor executes the same application tasks. The existence of a global time base, an in-

teractive consistency mechanism and a reliable voting mechanism are assumed at this level.

The formal details of the model, specified as a state transition system, are described in

section 3.3.

Although not anticipated during the Phase 1 effort, another layer of refinement was in-

set'ted before the introduction of asynchrony. Level 3 of the hierarchy breaks a frame into

four sequential I)hases. This allows a more explicit modeling of interprocessor communication

and the time phasing of COmlmtation, (:ommtmication, and voting. The use of tiffs interme-

dlate model avoids introducing these issues along with those of real time, thus preventing

an overload of details in the proof process.

At the fourth level, the assumptions of the synchronous model must be discharged.

Rushby and yon llenke [8] report on the formal verification of Lamport and Melliar-Smith's

[9] interactive-convergence clock synchronization algorithm. This algorithm can serve as a

foundation for the implementation of the replicated system as a collection of asynchronously

operating processors. Dedicated hardware iml)lementations of the clock synchronization

function are a long-term goal.

Final realization of the reliable computing platform is the subject of the Phase 3 effort.

r • .rh,. research activity will cuhninate in a detaih'd design and prototype implementation.

3
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Figure 2: Generic hardware architecture.

Figure 2 depicts the generic hardware architecture assumed for implementing the replicated

system. Single-source sensor inputs are distributed by special purpose hardware executing

a Byzantine agreement algorithm. Replicated actuator outputs are all delivered in parallel

to the actuators, where force-sum voting occurs. Interprocessor communication links allow

replicated processors to exchange and vote on the results of task computations. As previously

suggested, clock synchronization hardware may be added to the architecture as well.

1.2 Overview of Results

Before presertting the complete details, we provide all overview of the major formalizations

and results for tile reliable computing platform. In accordance with accepted terminology,

we consider a fault to be a co,ditlon ill which a piece of hardware is not operating within

its specifications due to physical malfunction, alJ(t an error to be an incorrect computation

result or system output. Wl,m a fa,ult occurs, errors may or may not be produced. Although

fault-tolerant architectures offer a high degree of immunity from hardware faults, there is a

limit to how many simultaneous faults can be tolerated. Unless this limit is exceeded during

system operation, the system will mask the occurrence of errors so that the system as a

whoh' produces no coml)utation errors. If the limit is exceeded, however, the system might

l)ro(htce erroneous results.
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The primary mechanism for tolerating faults is voting of redundant computation results.

Voting can take place at a number of locations in the system and associated with each choice

are various tradeoffs. If voting occurs only at tile actuators and the internal state of the

system (contained in volatile memory) is never subjected to a vote, a single transient fault can

permanently corrupt the state of a good processor. Tiffs is an unacceptable approach since

field data indicates that transient faults are significantly more likely than permanent faults

[10]. An alternative voting strategy is to vote the entire system state at frequent intervals.

This approach quickly purges the effects of transient faults from the system; however, the

computational overhead for this app,'oach may be prohibitive. There is a trade-off between

the rate of recovery from transient faults and the frequency of w_ting. The more frequent the

voting, the faster the recovery fron_ transients, but at the price of increased computational

overhead. We observe that voting nccd only occur for a system state that is not recoverable

from sensor inputs. A sparse voting approach can accomplish recovery from the effects of

transient faults at greatly reduced overhead, but involves increased design complexity. The

formal models presented here provide an abstract characterization of the voting requirements

for a fault-tolerant system that purges tile effects of transient faults.

The proofs we construct are implicitly conditional to account for the situation of limited

fault tolerance. The main results we establish can be expressed by the following formula:

3 = v(,.,,...,,.,,)

where W is a predicate to define a minimal working hardware subset over time, s is the

uniprocessor model's system results, vl,. •., r,, are the results of the replicated processors, and

V is a function that selects the properly voted values at each step. Moreover, asynchronous

operation is assumed at the lowest specification layer. 1, this case, we further establish that

if the minimal working hardware includes an adequate number of nonfaulty clocks, and clock

synchronization is maintained, then the voted outputs continue to match those of higher level

specifications. Thus, as long as the system hardware does not experience an unusually heavy

burst of component faults, the proof establishes that no erroneous operation will occur at

the system level. Individual replicates may produce errors, but they will be out-voted by

replicates producing correct results.

If the condition W were true 100% of the time, tile system would never fail. Unfortu-

nately, real devices are imperfect and this cannot be achieved in practice. The design of

the fault-tolerant architecture must ensure that condition W holds with high probability;

typically, the goal is P(W) > 1 - 10-9 for a 10 hour mission. This condition provides a

vital connection between the reliability model and the formal correctness proofs. The proofs

conditionally establish that system output is not erroneous as long as W holds, and the

reliability model predicts that W will hold with adequately high probability.

In the formal development to follow, we model the possible occurrence of component

hardwa,'e faults and the unknown nature of computation results produced under such condi-

tions. It is important to note that this modeling is for specification purposes only and reflects

no self-cognizance on the part of the running system. We assume a nonreconfigurable archi-

tecture that is capable of masking the effects of faults, but makes no attempt to detect or

diagnose those faults. Each replicate is compl,ting independently and continues to operate

t,he best it. can under faulty conditions; it has no knowledge of its own faultiness or that of



its peers.Whereverthe formal specificationsconsiderthe two casesof whether a processor
is faulty or not, it is important to rememberthat this caseanalysisis not performedby the
running system. Also, it is important to realize that transient-fault recovery is a process

that is continually in effect, even when there have been no fault occurrences. Each processor

in the system continually votes and replaces its state with voted values. Thus, tile transient

fault recovery process does not require fault (lct(:ction.

1.3 Previous Efforts

Many techniques for implementing fault-tolerance through redundancy have been developed

over the past decade, e.g. SIFT [ll], FTMP [121, FTP [131, MAFT [141, and MARS [15].

An often overlooked but significant factor in the development process is the approach to

system verification. In SIFT and MAFT, serious consideration was given to the need to

mathematically reason about the system. In FTMP and FTP, the verification concept was

almost exclusively testing.

Among previous efforts, only the SIFT project attempted to use formal methods [16]. Al-

though the SIFT operating system was never completely verified [17], the concept of Byzan-

tine Generals algorithms was developed [18] as was the first fault-tolerant clock synchroniza-

tion algorithm with a mathematical performance proof [9]. Other theoretical investigations

have also addressed the problems of replicated systems [19].

Some recent work at SRI International has focused on problems related to the style of

fault-tolerant computing adopted by RCP. Rushby has studied a fault masking and tran-

sient recovery model and created a formalization of it using EilDM [20, 21]. In addition,

Shankar has undertaken the formalization of a general scheme for modeling fault-tolerant

clock synchronization algorithms [22, 23].

2 Specification Hierarchy and Verification Approach

This section outlines the general methods used in the RCP specifications and proofs. Detailed

discussions of the actual specifications appear in later sections.

2.1 The State Machine Approach to Specification

The specification of the Reliable Computing Platform (RCP) is based upon a state-machine

method. The behavior of the system is described by specifying an initial state and the

allowable transitions from one state to another. The specification of the transition must

determine (or constrain) the allowable destination states in terms of the current state and

current inputs. One way of doing this is to specify the transition as a function:

ftran : stale x input --* state

'['his is an appealing method when it (:an 1)e used. A second method is to specify the transition

as a mathematical relation between the current state, the input and the new state. One way



to specifya mathematical relation is to defineit usinga function from the current state, the
current input and tile new state to a boolean:

R " .stale × inp'at × slate --_ boolean

The fuuction R is true precisely when thi; rebdion holds and false, otherwise. The meaning

is as follows: a transition from the current state to the new state can occur only when the

relation is true. Although the concept is simple it is somewhat awkward to use at first.

Consider the function g defined by 9(x) = (x + 4) _.

In relational form this function might be expressed by:

u) = [,j= (x + 4):]

q'he latter form is more awkward than the former when a purely functional relationship exists

between a: and y. Howeww, a relational approach has some advantages over a functional

approach for the specification of complex system behavior. In particular, nondeterminism

can be accommodated in a specification by only partially constraining system behavior. For

example, if R is changed to the following:

n(x, u) = [x> 0 z u = + 4)

the value of y is specified only for positive values of x. In other cases, any value of y would

stand in the relation R to z. Such partially constrained specifications are very natural for

modeling fault-tolerant systems. It allows us to say nothing about the behavior of failed

components, thereby enabling proved results to hold no matter what behavior is exhibited

by failed components during system operation.

The relation R would be described as follows in the EHDM specification language:

R: function[number, number -> bool] =

(LAMBDA x,y: (x > 0 IMPLIES y = (x+4)*(x+4)))

The first line declaa'es that R is a function from number x number to the set of booleans

(bool). The second line uses lambda notation to define the body of the function.

It should also be noted that the modeling approach used in this paper is not based upon

a finite state machine technique. Some of the components of the state takes values from

infinite domains. Therefore, verification tools such as STATEMATE [24] or MCB [25] are

not applicable to our specifications.

2.2 Specifying Behavior in the Presence Of Faults

The specification of the RCP system is given in relationa] form. This enables one to leave

unspecified the behavior of a faulty component. Consider the example below.

Rt_,_ : function[State, State -* bool] =

(A s,t: nonfaulty(s(i)) D l(i) = f(s(i)))



In the relation Rtr=,, if component i of state s is nonfaulty, then component i of the next

state t is constrained to be equal to f(s(i)). For other values of i, that is, when s(i) is faulty,

the next state value t(i) is unspecified. Any behavior of the faulty component is acceptable

in tile specification defined by Rt_,,.
An alternative approach is to define the transition as a partially-specified function:

ft,an : function[State --* State]

tran_ax : Axiom nonfaulty(s(i)) 3 ft,._,,,(._)(i) = .q(.s(i))

This approach does not fit within tile definitional structure of EIIDM. Therefore, one must

use an axiom to specify properties of a total, but partially defined function. This leads to a

large number of axioms at tile base of the proofs and significantly increases the possibility

of inconsistency in the axiom set.

2.3 The Specification Hierarchy

The RCP specification consists of four separate models of the system: Uniprocessor Sys-

tem (US), Replicated Synchronous (RS), Distributed Synchronous (DS), Distributed Asyn-

chronous (DA). Each of these specifications is in some sense complete; however, they are at
different levels of abstraction and describe the behavior of the system with different degrees

of detaih The US model is the most abstract and defines the behavior of the system using a

single uninterpreted definition. The RS level supplies more detail. The computation is repli-

cated on multiple processors but the data exchange and voting is captured in one transition.

The next level, tim DS level, introduces even more detail. Explicit buffers for data exchange

are modeled and the transition of the RS level is decomposed into 4 sub-transitions. The DA

level introduces time, and different clock times on each of the separate processors. 4

"° Uniprocessor System layer (US). As in the Phase 1 report [1], this constitutes the

top-level specification of the functional system behavior defined in terms of an idealized,

fault-free computation mechanism. This specification is the correctness criterion to be

met by all lower level designs. The top level of the hierarchy describes the operating

system as a function that performs an arbitrary, application-specific computation.

. Replicated Synchronous layer (R5). This layer corresponds to level 2 of the Phase 1

report. Processors are replicated and the state machine makes global transitions as if

all processors were perfectly synchronized. ]nterprocessor communication is hidden and

not explicitly modeled at this layer. Suitable mappings are provided to enable proofs

that the RS layer satisfies the US layer specification. Fault tolerance is achieved using

exact-match voting on the results computed by the replicated processors operating on

the same inputs. Exact match voting depends on two additional system activities:

(1) single source input data must be sent to the redundant sites in a consistent man-

net to ensure that each redundant processor uses exactly the same inputs during its

4 l')ue to the difficulties associated with ree.soning about a.synchronous systems, it was desirable to perform

as much of the design and verification using a synchronous model a.s possible. Thus, only at level 4 is time

explicitly inl,roduc_'d.



computations, and (2) the redundant processingsites must synchronizefor the vote.
Interactive consistency can l)e achieved on sensor inputs by use of Byzantine-resilient

algorithms [18], which are probably best iml)h'nwnted in custovn hardware. To ensure

absence of single-point failures, electrically isolated processors cannot share a single

clock. Thus, a fault-tolerant implementation of the uniprocessor model must ultimately

be an asynchronous distributed system, llowever, the introduction of a fault-tolerant

clock synchronization algorithm, at the DA layer of the hierarchy, enables the upper

level designs to be performed as if the system were synchronous.

, Distributed Synchronous layer (DS). Next, the interprocessor communication

mechanism is modeled and transitions fi)r the RS layer machine are broken into a

series of subtransitions. Activity on the separate processors is still assumed to occur

synchronously. Interprocessor communication is accomplished using a simple mailbox

scheme. Eactl processor has a mailbox with bi:_s to storm incoming mcssages from each

of the other processors of the system. It also has an outgoing box that is used to

broadcast data to all of the other processors in the system. The DS machine must be

shown to implement the RS machine.

,t. Distributed Asynchronous layer (DA). I;'inally, the lowest layer relaxes the as-

sumption of synchrony and allows each processor to run on its own independent clock.

Clock time and real time are introduced into the modeling formalism. The DA machine

must be shown to implement the DS machine provided an underlying clock synchro-

nization mechanism is in place.

The basic design strategy is to use a fault-tolerant clock synchronization algorithm as the

foundation of the operating system. The synchronization algorithm provides a global time

base for the system. Although the synchronization is not perfect it is possible to develop

a reliable communications scheme where the clocks of the system are skewed relative to

each other, albeit within a strict known upper bound. For all working clocks p and q, the

synchronization algorithm provides tlw. following key property:

<

assuming that the number of faulty clocks, say m, (lo(,s not exceed (nrep-1)/3, where nrep

is the number of replicated processors. This property enables a simple communications

protocol to be established whereby the receiver waits until maxb + _ after a pre-determined

broadcast time before reading a message, where maxb is the maximum communication delay.

Eac]l processor in the system executes the same set of application tasks every cycle. A

cycle consists of the minimum number of fi-ames necessary to define a continuously repeating

task schedule. Each frame is frame_time units of time long. A fi'ame is further decomposed

into 4 phases. These are the compute, broadcast, vote and sync phases. During the compute

phase, all of the applications tasks scheduh'd for this frame are executed. The results of all

tasks that are to be voted this frame are then loaded into the outgoing mailbox. During

the next phase, the broadcast phase, the syst, em merely waits a sufficient amount of time to

allow all of the messages to be delivered. As mentioned above, this delay must be greater

than maxb + 8. During the vote phase, each processor retrieves all of the replicated data



from each processor and performs a voting operation. Typically, this operation is a majority

vote on each of tile selected state elements. The processor then replaces its local memory

with the voted values. It is crucial that the vote phase is triggered by an interrupt and

all of the vote and state-update code be stored in ROM. This will enable the system to

recover fi'om a transient even when the progranl comlter has been affected 1U a transient

fault. Furthermore, the use of ROM is necessary to ensure that the code itself is not affected

by a transient, s During the final phase, the sync phase, the. clock synchronization algorithm

is executed. Although conceptually this can be perfornmd in either software or hardware,

we intend to use a hardware implementation.

2.4 Extended State Machine Model

Formalizing the behavior of the Distributed Asynchronous layer requires a means of incor-

porating time. We accomi)lish this by formulating an extended state machine model that

includes a notion of local clock l,ime for each processor. It also recognizes several types

of transitions or operations that can be invoked by each processor. The type of operation

dictates which special constraints are imposed on state transitions for certain components.

Tim time-extended state machine model we use allows for autonomous local clocks on

each processor to be modch'd using snapshots of ('lock time coinciding with state transitions.

Clock values represent the time at which the last transition occurred (time current state was

entered). If a state was entered by processor p at time T and is occupied for a duration D,

the next transition occurs for p at time T + D and this clock value is recorded for p in the

next state. 6 A function cp(T) is assmned to map local clock values fol: processor p into real

time. cp(T) is a specification-only fimction; it is not implemented by the system.

Clocks may become skewed in real time. Consequently, the occurrence of corresponding

events on different processors may be skewed in real time. A state transition for the DA

state machine corresponds to an aggregate transition in which each processor experiences

a particular event, such as coml)leting one phase of a frame and beginning the next. Each

processor may experience the event at different real times and even different clock times if
duration values are not identical.

The DA model is based on a specialized kind of state machine tailored to the needs of

an asynchronous system of replicated l)rocessors. The intended interpretation is that each

conq)onenl, of the state models th(_ local state of one I>ro<'essor and its associate<l hardware.

Each processor is assumed to have a local clock running independently of all the others.

Interprocessor communication is achieved by one class of transition that performs a simulta-

neous broadcast of a portion of the local state variables to all the other processors. Broadcast
values are assumed to arrive in the destination mailboxes within a bounded anaount of real

time maxb.

The four classes of transitions are defined as follows:

51n the design specifications, these implementation details are not explicitly specified, llowever, it is clear
that in order to s,sc<:e_sfully implement the models and pr<we that the implementation performs as specified,
such implementation constructs will be needed. These issues will 1)e explored in detail in future work.

e'We will use the now standard convention of representing clock time with Capital letters and real time
with lower case h,tters.
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Figure 3: States, transitions, and mappings.

1. L: Purely local processing that involves no broadcast communication or reading of the
mailboxes.

2. B: Broadcast communication where a send is initiated when the state is entered and

must be completed before the next transition.

3. R: Local processing that involves no send operations, but does include reading of

mailbox values.

4. C: Clock synchronization operations that may cause the local clock to be adjusted and

appear to be discontinuous.

We make the simplifying assumption that the duration spent in each state, except those of

type C, is nominally a fixed amount of clock time. Allowances need to be made, however, for

small variations in the actual clock time used by real processors. Thus if u is the maximum

rate of variation and Dr, Da are the intended and actual durations, then IDA -- Dr] < uD+

must hold.

2.5 The Proof Method

The proof method is a variation of the classical algebraic technique of showing that a

homomorphism exists. Such a proof can be visualized as showing that a diagram "commutes"

(figure 3). The system is describcd at two levels of abstraction, which will be referred to

as tile top and bottom levels for convenience. The top level consists of a current state s', a

destination state, t' and a transition that relates the two. The properties of the transition

are given as a mathematical relation, A/'top(s', t'). Similarly, the bottom level consists of a

state s, a destination state, t and a transition that relates the two. The properties of the

transition are given as a mathematical relation, ./_bottom(S, t). The state values at the bottom

level are related to tile state values at the top level by way of a mapping function, map. To

establish that l,he bottom level implements the top level one must show that the diagram

CO 11111"1I1 tes:

t) ,,,,,/0)
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US

RSmap

ItS

DSmap

DS

l)Amap

DA

Compute Broadcast Vote Sync

Figure 4: The RCP state machine and proof hierarchy

where reap(s) = s' and map(t) = t' in the diagram. One must also show that initial states

map up:

Zbo,,om(,) z,,,p(map(s))

An additional consideration in constructing such proofs is that only states reachable from

an initial state are relevant. Thus, it suffices to prove a conditional form of commutativity

that assumes transitions always begin from reachable statcs. A weaker form of the theorem

is then called for:

reachable(s) A Af_o.o,,_ (s, t) D Af_op(map( s ), map(t))

This form enables proofs that proceed by first establishing state invariants. Each invariant

is shown to hold for all reachable states and then invoked as a lemma in the main proof.

l"igure 4 shows the complete state machine hierarchy and the relationships of transitions

within the aggregate model. By performing three layer-to-layer state machine implementa-

tion proofs, the states of DA, the lowest layer, are shown to correctly map to those of US,

the highest layer. This means that any implementation satisfying the DA specification will

likewise satisfy US under our chosen interpretation.
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3 US/RS Specification

Up to now we have dealt only with general methods. Next we present tile RCP specifications

as developed using the EHDM language. An index at the end of this report indicates page

numbers where each specification identifier and special symbol is defined in the text. The

complete Ell DM specifications can be found in Appendix A.

3.1 Preliminary Definitions

The US and R5 specifications are expressed in terms of some primitive type definitions.

First, we must establish a "domain" or type to represent the complete computation state of

a processor. This domain is called Pstate. It is declared in EIIDM as

Pstate: Type (* computation state of a single processor *)

Thus, all of the state information subject to computation has been collapsed into a single

type Pstate. Similarly, inputs denotes the domain of external system inputs (sensors), and

outputs the domain of output values that will be sent to the actuators of the system. These

domains are named by the following EItDM declarations:

inputs:Type (* type of external sensor input *)

outputs: Type (* actuator output type *)

The number of processors in the system is declared as an arbitrary, positive constant, nrep:

nrep: nat (* number of replicated processors *)

The constraint on nrep's value is expressed by the following axiom

processors_exist_ax: Axiom nrep > 0

is a requirement that the system have at least one processor. Nearly all symbolic constants

we introduce will have similar constraints imposed on them.

At the R5 level and below, information is exchanged among processors via some interpro-

cessor communication mechanism. Additional types are needed to describe the information

,nits involved, being based on a mailbox model of communication. First, we introduce a

domain of values for each bin in the mailboxes:

MB :Type (* mailbox exchange type *)

Then we construct a type for a complete mailbox on a processor:

M Bvec: Type = array [processors] of M B

This scheme provides one slot, in the mailbox array for each replicated processor.
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3.2 US Specification

The US specification is very simple:

s, t: Vat Pstate

u: Var inputs

.Aft,: Definition function[Pstate, Pstate, inputs --, bool] =

(_ s,t,u: t = f_(u,s))

The function A/',,, defines a mathematical relation between a current state and a final state,

i.e., it defines the transition relation. For this model, the transition condition is captured by a

function: fc(u, s), i.e., the computation performed by the uniprocessor system is determinis-

tic and thus can be modeled by a function fc : inputs × Pstate --4 Pstate. To fit the relational,

nondeterministic state machine model we let the state transition relation JV',,,(s, t, u) hold iff

/ = fc(u,s).

External system outputs are selected from the values computed by ft. The function

f_ : Pstate --+ outputs denotes the selection of state variable values to be sent to the actuators.

The type outputs represents a composite of actuator output types.

Although there is no explicit mention of time in the US model, it is intended that a

transition correspond to one frame of the execution cycle (i.e., the schedule).

The uninterpreted constant initial_proc_state represents the initial Pstate value from which

computation begins.

initial_us: function[Pstate --+ bool] = ( )_ s : s = initial_proc_state)

initial_us is expressed in predicate form for consistency with the overall relational method of

specification, although in this case the initial state value is unique.

3.3 RS Specification

At the RS layer of design, the state is replicated and a postprocessing step is added after

computation. Tl,is step represents the voti,g of state variables and thus may be selectively

applied. It suffices to encapsulate the entire voting process under a single function of the

global state. Nonetheless, it is better to split voting into two parts to facilitate refinement to

the DS layer. Another difference introduced at this layer is that the state transition relation

needs to be conditioned on the nonfaulty status of each processor.

The global state at this level has type RSstate. This is a vector of length nrep where

each component of the vector defines the state of a specific processor. Each processor in

the system can be faulty or nonfaulty as a function of time measured in frames. The local

l)rocessor "state" must not only reflect the computation state but indicate whether or not

a processor is faulty. Such status information about faultiness is included for the purpose

of modeling system behavior. An actual system component would be unable to maintain

this status and it is understood that this part of the state exists only to model operational

behavior and is not an implemented part of the system. Specification of the state type is as

follows:
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rs_proc_state: Type = Record healthy : nat,

proc_state " Pstate
end record

RSstate: Type = array [processors] of rs_proc_state

The state of a single processor is given by a record named rs_proc_state. The first field of

tile record is healthy, which is 0 when a processor is faulty. Otherwise, it indicates the

(unbounded) number of state transitions since the last transient fault. Its value is one

greater than the ,lumber of prior nonfaulty frames. A permanent fault is indicated by a

perpetual value of 0. A processor that is recovering f,'om a transient fault is indicated by a

value of healttly less than the recovery period, denoted by tile constant recovery_period. This

constant is determined by details of the application task schedule and the voting pattern used

for transient recovery. A processor is said to be working whenever healthy >_ recovery_period.

The second field of the record is the computatioll state of the processor. It takes values from

the same domain as used in the US specification, q'he complete state at this level, RSstate,

is a vector (or array) of these records.

Two uninte,'preted functions are assumed to express specifications that involve selective

voting on portions of the computation state. Their role is described more fully in section 3.5.

fs: function[Pstate---, MB] (* state selection for voting *)

fv: function[Pstate, MBvec _ Pstate] (* voting and overwriting *)

These two functions split up the selective voting process to mirror what happens in the RCP

architecture. [ _rst, f, is used to select a subset of the state components to be voted during

the current frame. The ch9iceof which component s to vote is assumed to depend on the

computation state. It maps into the type MB, which stands for a mailbox item. Second,

the fimction f. takes the current state value and overwrites selected portions of it with

voted values derived from a vector of mailbox items. Voting is performed on a component-

by-component basis, that is, applied to each task state separately, rather than applied to

entire mailbox contents. Note that selection via f., need not be a mere projection, but could

involve more complex data transformations such ms adding checksums to ensure integrity

during transmission.

Given this background, the transition relation, Af,_, can be defined:

A/',.,: Definition function[RSstate, RSstate, inputs _ heel] =

(A.s,t,u : (_q h : (Y/:

(s(i)).healthy > 0

good_values_sent(s, u, h(i)) A voted_final_state(s, t, u, h, i)))

A allowable_faults(s, t))

This relation is defined in terms of three stlbfunctions: good_values_sent, voted_final_state,

and allowable_faults. The first aspect of this definition to note is that the relation holds

only when allowable_faults is true. This corresponds to the "Maximum Fault Assumption"

discussed in [1], namely that a majority of processors have been working up to the current

time. The next thing to notice is that tl!c transition relation is defined in terms of a conjunc-

tion good.values_sent(s,u,h(i)) A voted_final_state(s,t,u,h,i))). The meaning is intuitive: the
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outputs producedby the good processorsarecontainedin the vector h (i.e., h(i) is derived

from the value produced on processor i), and the [inal state t is obtained by voting the h

values. Let us look at the voted_finaLstate relation first.

voted_fi nal_state: fu nction [RSstate, RSstate, in puts, M Brnat rix, processors -_ bool]

= ( )_ .%t,u,h,i:/(i).proc_state = f,,(.f_(u,.,(i).proc_state),h(i)))

Processor i is initially in state s(i). If it is nonfaulty (s(i).healthy > 0), then its transition

to the state t(i) observes the following constraint:

t(i).proc_state = f_(f_(u,s(i).proc_state),h(i)))

Otherwise, tile I,ehavior of tile processor is not defined (i.e., a known mathematical relation

is not given). The change to the processor state is defined using two functions: f_, f,. The

function f,_ is the same function used in the US specification. The function f. operates on

the updated computation state and values obtained from the other processors to produce a

new state. The idea, is that the new state is obtained by replacing local values with voted

va] tles.

The values sent by the other processors must satisfy the following relation:

good_values_sent: function[RSstate, inputs, MBvec _ bool] =

(A s,u,w : (Vj :

(S(j)).healthy > 0 D w(j)= f,(f_(u,s(j).proc_state))))

This relation constrains the h(i) values used in the definition of the Af,, transition relation.

Although this function is called with h(i) as an argument, its formal parameter is named w.

There is one w value for each processor, which is used to model that processor's mailboxes.

If the sending processor j is nonfaulty (s(j).healthy > 0), then the value in the receiving

mailbox w is given by

.f, (fc(u, s(j).proc_state)).

'['he function f, selects which portion of the total state is to be voted. Note that since it is

zt function of the (complete) state, it can differ as a function of the frame, i.e., different data

are voted during different frames.

Tim allowable_faults fun(:tion is (h'[ined as follows:

allowable_faults: function[RSstate, RSstate _ bool] =

( A s, t : maj_working(t)

A (VI:/(/).healthy > 0 D t(i).healthy = 1 + _(i).healthy))

This function enforces the restriction imposed l)y the Maximum Fault Assumption, namely

that all reachable states must have a majority of working processors. The condition is

expressed in terms of the function maj_working and its subordinates:

maj_condition: function[set[processors]--_ bool] =

( A A: 2 * card(A) > card(fullset[processors]))
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working_proc: function[RSstate, processors --, bool] =

(_ s,p: (s(p)).healthy > recovery_period)

working_set: function[RSstate _ set[processors]] -

( )_s: ( _ p: working_proc(s, p)))

maj_working: function[RSstate --* bool] =

( A t : maj_condition(working_set(t)))

The working_set function gives the set of working processors h)r the current replicated state.

The cardinality of this set is then the number of working processors. (Note that sets are

usually represented in EHDM by predicates on the eh,ment type. Thus, (Ax : P(x)) denotes

t_,e set {xlP(x)}.) Tlle relation allowable_faults is defined whenever the destination state

co_ltains a majority of working processors. It also states that if a processor is nonfaulty for

the current frame then the next state's value of healthy equals the previous state's value

pltts one.

The initial state predicate initial_rs sets each element of the RS state array to the same

value with the healthy field equal to recovery_period and the proc_state field equal to ini-

tial_proc_state.

initial_rs: function[RSstate --_ bool] =

( As : (Vp : s(p).healthy = recovery_periodAs(p).proc_state = initial_proc_state))

The constant recovery_period is the number of frames required to fully recover a processor's

state after experiencing a transient fault. By initializing all healthy fields to this value, we

are starting the system with alI processors working.

3.4 Actuator Outputs

The nature of actuator outputs in the RCP application deserves special attention. In the

uniprocessor case, an output is produced during.each frame and sent to the actuators and

,m ambiguity exists. In a replicated system, however, multiple actuator values are produced

and sent during each frame. Each nonfaulty processor p sends actuator values given by

fa(r._(p).proc_state). There are nrep sets of actuator values delivered in parallel, some of

which may be copies of previous values for processors that have failed in such a way as to

stop generating new values.

It is understood that actuator outputs may be sent through one or more hardware voting

plane.s before arriving at the actuators themselves. Other types of signal transformations

inay be applie(! to actuator lines between the output drivers and termination points. Ad-

ditionally, some kind of force-sum voting typically is applied at the actuators to mask the

p,'esence of errors in one or more channels. All of tl!is activity seeks t o ensure that actuators

perform as directed by a consensus of processors. These special-purpose requirements of the

apl)lication leave us unable to completely reflect the l)roper constraints in the correctness

criteria, llowew;r, we cau use the majority function to map replicated output values into the

single actuator output value that would be produced by an ideal uniprocessor. This captures

the effect of voting planes and approximates the effect of force-sum voting at the actuators.
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To show that replicated actuator outputs can be mapped into a single actuator output, we

reason as follows. At the R5 level, there are nrep actuator values given by f_(rs(p).proc_state)

for p = 1,...,nrep. In section 4, a property of R5 states is described that asserts that

a majority exists among tile proc_state values. In other words, a majority of values in

{rs(p).proc_state} equal maj(,'_). Therefore, a majority of £(r_(p).proc_state) values exists

and is equal to £(rnaj(rs)). Since maj(rs), the mapped value of an R5 state, is equal to the

corresponding US state, this shows that a majority of RS actuator outputs match the value

produced by tile fault-free US machine.

Note that various additional requirements may be necessary, but are regarded as peculiar

to the nature of an RCP application, llence they must bc imposed as correctness criteria

beyond those necessary to show that one state machine properly implements another. The

intended use of replicated actuator outputs is not cont_tined in the State machine models and

may necessitate the use of additioual, application-specific correctness conditions.

3.5 Generic Fault-Tolerant Computing

To model a very general class of fault-tolerant, real-time computing schemes, we seek to

parameterize the specifications as much as possible. This parameterization takes the form

of a set of uninterpreted constants, types, and functions along with axioms to constrain

their values. Some instances have already been introduced. The function re, for example,

represents any computation that can be modeled as a function mapping fi'om inputs and

current state into a new state. As hardware redundancy and transient fault recovery are

added to the specifications, additional types and functions are needed to express system
behavior.

3.5.1 State Model for Transient Fault Recovery

Thus far, we have not concerned ourselves with the internal structure of the computation

state Pstate. However, to capture the concept of recovering this state information piecewise,

it is necessary to make some minimal assumptions about the structure of a Pstate value.

control_state: Type (* portion of state used to control or schedule

computation activities, e.g., frame counter *)

cell:Type (* index for components of computation state *)

ceil_state:Type (* information content of computation state components *)

We assume the state contains a controlpol'tion,used to schedule and manage computation,

and a. vector of cells, each individually accessibh; and holding application-specific state in-

formation. A sample instantiation of these types is that found in our previous report [1]:

the control state is a frame counter and the cells represent the outputs of task instances in

the task schedule. Unlike o L,r previous mode.l, however, the more general framework allows

a system to maintain state_iufornmtion further back than just the previous execution of a

schedule cell.

Also assumed is the existence of access functions to extract and manipulate these items

from a Pstate va.lue.
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succ: function[control_state--_ control_state] (* next control state *)

fk: function[Pstate--* control_state] (* extracts control state *)

ft: function[Pstate, cell --4 cell_state] (* extracts cell (e.g. task) sta.te *)

As described in section 3.3, two additional functions are assumed to express specifica-

tions that involve selective voting on portions of tim cornputation state. The functions

f, :¢Pstate ---, MB and f. : Pstate × MBvec ---+ Pstate were introduced to model the selective

voting process applied by each processor, f, selects which portions of the computation re-

sults are subject to voting, f. takes these selected values from the replicated processors and

replaces the required portions of the current state with voted values.

For every voting scheme used for transient fault re_:ovcry within RCP, we must be able to

determine when the state components have been recovered from voted values. This condition

is expressed in terms of the current control state and the number of noufaulty frames since

the last transient fault. Two unintcrpreted functions arc provided for this purpose.

rec: function[cell, control_state, nat -_ bool]

The predicate roe(c, K, H) is true iff cell c's state shouhl have been recovered when in control

state K with healthy frame count H. Recall that we use a healthy count of one to indicate

that the current frame is nonfaulty, but the previous frame was faulty. This means that

tl - ! healthy frames haw: occurred prior to the current one.

dep: function[cell, cell, control_state _ bool]

The predicate dcp(e, d, K) indicates that cell c's value in the next state depends on cell d's

value in the current state, when in control state I(. This notion o1' dependency is different

from the notion of computational dependency; it determines which cells need to be recovered

in the current frame on the recovering processor for cell c's value to be considered recovered

at the end of the current frame. If cell c is voted during K, or its computation takes only

sensor inputs, there is no dependency. If c is not:computed during h', c depends only on its

own previous vah,e. Otherwise, c depends on one o1' more cells for its new value.

One derived function is used in the axioms. It asserts that two states X and Y agree on

all the corresponding cells on which cell c depends.

dep_agree: function[cell, control_state, Pstate, Pstate _ bool] =

( )t c,K,X,Y : (Vd" dep(c,d,K) D ft(X,d) = ft(Y,d)))

3.5.2 Transient Recovery Axioms

llaving postulated several functions that characterize a generic fault-tolerant computing

application, it is necessary to introduce axioms that sufficiently constrain these functions.

Once concrete definitions for the functions have been chosen, these axioms must be proved

to follow as theorems for the RCP results to hold for a given application. The eight axioms

are presented below.

succ_ax: Axiom h(J_(u, ps)) -- succ(fk(ps))
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The first axiom states the simple condition that fc computes the successor of its control state

component.
Three axioms give properties of the function rec.

full_recovery: Axiom I1 > recovery_period D rec(c, h', H)

initial_recovery: Axiom rec(c, K, H) D H > 2

dep_recovery: Axiom rec(e, succ(K),ll + 1)A dep(c,d,K) _ rec(d,K, II)

First, we require (,hat after tile recovery period has transpired, all cells should be considered

recovered by rec. Second, it ta.kes a minimum of two frames to recover a cell. (This is

necessary because one frame is used to recover the control state. In some applications, it

may be possible to recover cells in one frame, but our proof approach does not accommodate

those cases and the more conservative minimum of two is used.) Third, if cell c is to be

recovered in the next state, all cells it depends on must be recovered in the current state.

components_equal: Axiom

fk(X) =/k(Y) A (Me : f,(X,c)=ft(Y,c))D X= Y

'l'his axiom, which is a type of extensionality axiom, requires that the control state and cell

state values form an exhaustive partition of a Pstate value.

Two axioms capture the key conditions for recovery of individual state components.

control_recovered: Axiom

maj_condition(A) A (Vp: p E A D w(p) = f_(ps)) D fk(fv(Y, w)) = fk(ps)

cell_recovered: Axiom

maj_condition (A)

A (Vp :pEa Dw(p)= L(L(u, ps)))

A fk(X) = K A fk(ps) = K/x dep_agree(c,K,X, ps)

ft(f_(f,(u,X),w),c) = ft(f,(u, ps),c)

'['he first axiom requires that the control state component be recovered after every frame.

Thus, fo must vote the control state unconditionally and update the Pstate value accordingly.

q hc cottditions in the antecedent state that for a majority of processors, their mailbox items

must match the value selected by the function f,. The other axiom gives the required

condition for recovering an individual cell state vahte. All cell values that c depends on must

already agree with the majority value. After voting with f,, the function ft must extract a

cell state that matches that of the consensus.

vote_maj: Axiom maj_condition(A) A (Vp" p E A D w(p) = f,(ps))

L(ps, to)= ps

r]_l en final axiom expresses the additional requir_'ment on f,, that if a majority of processors

agree on selected mailbox values derived from state p.s, then f,, applied to ps preserves the

wdue ps. In other words, once a Pstate value has b¢;en fully recovered, it will stay that way

in the face of subsequent w)ting.
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3.5.3 Sample Interpretations of Theory

The proofs of section 4 make use of the foregoing axioms to establish that the RS specifica-

tion correctly implements the US specification. A valid interpretation of the model provides

definitions for tile uninterpreted types and functions that are ultimately used to prove the

axioms as theorems of the interpreted theory. To maintain the generality of our model and

its applicability to a wide range of designs, we do not provide any standard interpreta-

tions. Nevertheless, it is desirable to carry out the exercise to establish that the axioms are

consistent and can be satisfied for reasonable int(_rpretations.

Two sample interpretations wcrc constru('tcd based on voting schemes introduced in

the Phase l report Ill. Definitions for the basic conccl)ts of a static, task-based scheduling

system were formalized first. Included were the notions of cells as being derived from a frame,

subframe pair, and state components to record both the frame counter as well as task outputs.

Task execution according to a fixed, repeating schedule was assumed. Definitions were also

provided for the continuous voting and cyclic voting schemes [1]. In both cases, the transient

recovery axioms were proved using EIIDM. A preliminary form of these specifications are

given in Appendix B.

Carrying out the proofs required several changes to the module structure embodied in

the specifications of Appendix A. I,br this reason, the specifications in Appendix B have not

yet been integrated with the specifications of Appendix A. Additional work is required to

integrate these provisional interpretations into the existing framework. The proofs conducted

thus far were performed simply to demonstrate that the axioms could be satisfied and are

thus consistent.

The continuous voting scheme requires that all state components are voted during each

frame. Hence transient recovery is nearly immediate. Formalizations for this case are very

simple and the proofs are trivial. The cyclic voting scheme represents the typical case where

state components are voted in the frame they are produced. A cell's value is not voted during

frames where it is not recomputed. Formalization in this case is somewhat more involved

and the proofs require a bit more effort. The proofs and supporting lemmas comprise about

two pages of EtlDM specifications. A few selected definitions for the cyclic voting functions
are shown below.

f,: function[Pstate --, MB] =

(,k ps : ps with [(control) := ps.control, (cells) :=

cell_apply(( A c: ps.ceils(c)),
ps.control,

null_cell_array,

num_cells)])

fo: function[Pstate, MBvec -_ Pstate] =

( )_ ps, w: ps with [(control):= k_maj(w), (cells) :=

ceH_ pply((a t_maj(,,,,
ps.control,

ps.cells,

num_cells)])
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rec: function[cell, control_state, nat --_ bool] =

(Ac, K,H:H

> 1 + (if K = cell_frame(c)

then schedule_length

else mod_min us( It', cell_fra me(c) )

end if))

dep: function[cell, cell, control_state _ bool] =

( X c, el, K: cell_frame(c) # It" A c = d)

A few supporting definitions'are omitted; these functions are presented merely to show the

general order of complexity involved.

4 RS to US Proof

Proving that the RS state lnachine correctly implements tile US state machine involves

introducing a mapping between states of the two machines. The function RSmap defines the

required mapping, namely the majority of Pstate values over all the processors.

RSmap: function[RSstate --_ Pstate] = ( _ r.s" maj(rs))

maj: function[RSstate _ Pstate]

maj_ax: Axiom (3 A :

maj_condition(A) A (Y p : p E A D (,'s(p)).proc_state= us))

:3 maj(rs) = us

The two theorems required to establish that R5 implements US are the following.

frame_commutes: Theorem reachable(s)AN'_,(s, t, u) ::) A/'=,(RSmap(s), RSmap(t), u)

initial_maps: Theorem initial_rs(s) D initial_us(RSmap(s))

Tile theorern frame_commutes, depicted in figure 5, shows that a successive pair of reachable

RS states can bc mapped by RSmap into a successive pair of US states. The theorem

initial_maps shows that an initial RS state can be mapped into an initial US state.

The notion of state reachability is used to express the theorem frame_commutes. This

concept is formalized as follows: 7

rs_measure: function[RSstate, nat --_ nat] == ( )_ rs, k : k)

reachable_in_n: function[RSstate, nat --* bool] =

(,_ t,k : ilk=0

then initial_rs(/)

else ( 3 s, u : reachable_in_n(s, k - 1) A N'_,(s, t, u))

end if) by rs_measure

reachable: function[RSstate _ boo1]= ( ( 3 k: reachable_in_n(t, k)))
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Figure. 5: Mappings in the RS to US proof.

Proofs for the two main theorems are supported by a handful of lemmas. The most

important is a state invariant that relates values of various state components to their corre-

sponding consensus values.

state_invariant: function[RSstate_prop-_ bool] =

(A rs_prop : (Vt : reachable(O D rs_prop(t)))

state_rec_inv: Lemma state_invariant(state_recovery)

control_recovery: function[RSstate -_ bool] =

(A s "(Vp: (s(p)).healthy > ] D fk((s(p)).proc_state) = fk(maj(s))))

cell_recovery: function[RSstate -_ bool] =

: (Vp,¢:
rec(c, fk((s(p)), proc_state), (s(p)).healthy)

D ft((s(p)).proc_state, c)= ft(maj(s),c)))

state_recovery: function[RSstate _ bool] =

( A s" maj_exists(,u) A control_recovery(._)A cell_recovery(s))

The invariant state_recovery is shown to hold for all reachable states. The control recovery

condition of this invariant asserts that if a processor p has been nonfaulty for at least one

frame, then the control state, as extracted by fk, is equal to the consensus value. Similarly,

the (:ell recovery condition asserts that if cell c is due to be recovered, as indicated by the

predicate rec, then cell state c, as extracted by ft, is equal to the consensus value. Proving

the invariant requires invoking the axioms presented in section 3.5.

l_emmas showing that a majority among RS state values continues to exist after every

state transition are also proved in support of the invariant. One such lemma is also central

to the proof of frame_commutes.

7Note that fimc(.ious defined with "=-", such as in rs_measure,are semantically equivalent to those
defined with "-', the only difference is automatic expansion of " " functions during theorem proving.
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rec_maj_f_c: Lernma

maj_working(s)^ state_recovery(.,)̂ t, maj(1)= maj(s))

With a majority of working processors and state_recovery holding in current state s, this

lemma concludes that maj applied to the next state t equals the computation step fc applied

to maj of s. From this lemma it is clear how RS states and their images under maj will

correspond to the desired US states.

With the state_recovery invariaut establisl,ed, most of the work needed to prove the main

theorem frame.commutes is in 1,and. One additional lemma is useful to bridge the gap

between the two.

working_majority: function[RSstate --+ bool] =

( ,k ._: (V p: p C working_set(s) _ (s(p)).proc_state = maj(s)))

consensus_prop: Lemma state_recovery(s) 3 working_majority(s)

The h'mnm consensus_prop allows us to draw a key inference from the state_recovery invariant,

which is expressed by the predicate working_majority. This predicate asserts that for all

processors p that belong to the working set, i.e., for all working processors, p's value of

Pstate is equal to the majority value.

The proof of frame_commutes now follows from rec_maj_f_c and consensus_prop and as-

sorted definitions. The proof of initial_maps follows from definitions and the lemma ini-

tial_maj_cond, which states that an initial state satisfies the majority condition.

initial_maj_cond: Lemma initial_rs(s) 3 maj_condition(working_set(s))

This completes the proof that the RS machine implements the US machine.

Note that our proof is in terms of a generic model of fault-tolerant computation and

depends on the validity of the axioms of section 3.5. For some choices of definitions for the

uninterpreted functions, there will be substantial work required to establish those axioms

as theorems. For example, the Minimal Voting scheme presented in our Phase 1 report [1]

requires a nontrivial proof to establish that full recovery is achieved. Such details have been

omitted here. Nevertheless, the value of our revised approach is in its generality. The results

can now be ma<le to apply to a wide variety of frame-based, fault-tolerant architectures.

5 DS Specification

In tim Distributed Synchronous layer we focus on two things: expanding the state to include

"mailhoxes" for interprocessor communication and dividing a frame transition into four

sequential subtransitions. The state must also be expanded to include an indicator of which

l>hase of a fi'ame is currently being processed. This is done as follows.

The strt, cture of the mailbox for a four-p,'ocessor system is shown in figure 6. Each

processor contains a mailbox with one slot dedicated to each other processor in the system.

l",ach slot is large enough to contain the largest amount of data to be broadcast during one

frame. The nth slot of processor n serves a,s the outgoing mailbox.

The local state for ea<:ll processor can now be defined:
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I>3

P2

P4

Figure 6: Structure of Mailboxes in a four-processor system

ds_proc_state: Type = Record healthy : nat,
proc_state : Pstate,
mailbox : MBvec

end record

The vector of all processors ds_proc_state is named ds_proc_array:

ds_proc_array: Type = array [processors] of ds_proc_state

The complete DSstate is:

DSstate: Type - Record phase : phases,

proc : ds=proc_array
end record

In the DS specification, a frame is decomposed into four phases:

phases: Type = (compute, broadcast, vote, sync)

The first field of DSstate holds the current phase. Dvring each phase a distinct function is

i_erf<)rmed.

l. Computation. The proc_state <:omponent of the state is updated with the results of

com l>utation using the function f_.

2. Broadcast. lnterprocesso," communication is clTected by broadcasting the MB values

to all other processors, which are deposited iu their respective mailbo×es.
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3. Voting. The receivedmailbox valuesare voted and mergedwith the current Pstate
valuesto arrive at the end-of-framestate.

4. Synchronization. The clock synchronization function is performed. (No details of
the clocksare introduced until the DA specificationlayer.)

The transition relation for the frame is defined in terms of a l)hase-transition relation
.Alas.

frame_N_ds: function[DSstate, DSstate, inputs -4 bool] =

( A  ,t,u : (3x, y,z :
x, u)^ Ne.(x, y,u)^ Ale..(y,z, Al s(z,t,

Note how the intermediate states are defined using existential quantifiers and that the output

state of a l)ha.se transition becomes tile input of th(: next phase transition. The net result of

performing these four phase transitions will be shown to accomplish the same thing as the

single transition of the RS specification.

'['hc phase-transition relation is defined as follows:

Ale,: function[DSstate, DSstate, inputs --, bool] =

( A ._, l, u : maj_working(t)

A Lphase = next_phase(s.phase)

A(Vi:

if ._.phase = sync

then Al_(s, t, i)

else t.proc(i).healthy = s.proc(i).healthy

A (a.phase- compute D Al_s(s,t, tt, i))

A (s.phase = broadcast 2) 2V'ab,(s,_, i))

A (_.phase = vote D .Af,_,(s,t,i))

end if))

Notice that the phase-transition relation only holds when the next state t has a majority

of working processors. This corresponds to the analogous condition in Al_, presented in

section 3.3, where it appears as one conjunct of the allowable_faults relation. Hence, all

rea('llal)le states in the DS specification must have a majority of working processors.

The phase field of the state is advanced by the function next_phase. The phase-transition

relation is defi_,('(I in terms of four sub-relations: Al_,, Al_,, Al_, and Al_,, which correspond to

the compute, broadcast, vote and sync phases, respectively. The quantifier Vi invokes the sub-

relations for all of the processors of the system. Note that the statement t.proc(i).healthy =

._.proc(i).healthy after the else requires that the value of healthy remain constant throughout

a frame. Thus, if a processor is faulty anywhere in a frame it is considered to be faulty

throughout; the value of healthy may only change at the frame boundaries, i.e., at the sync

to compute transitions. Similarly, full recovery of state information does not occur until the

end of a frame. This is consistent with the previous work [1].

Table 1 provides a summary of the functions that are performed during each phase on

hinT faulty processors. In the tat)le .qi is an abbreviation for ,s.proc(i).

The Al_ sul)-relation defines the behavior of a single processor during the compute phase:
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Phase Ilehl consl,a.nt Modified

compute healthy ti.p,'oc_state = f,.(u, si.proc_stal,c)

ti.mailhox(i) = f.,(f_(u, s,.proc_state))

broadcast proc_statc (Y/,: t_.mailbox(p) = s_,.mailbox(l,))

healthy

vote mailbox li.pl'oc_state = f_(._i.proc_state, s/.mailbox)

healthy

syne proc_state ti.healthy = 1 + si.lma.lthy

Table 1" Smnmary of activities during various phases

A/'_,: function[DSstate, DSstate, inputs, processors -_ bool] =

(A s,t,u,i :

s.proc(i).healthy > 0

2) t.proc(i).proc_state -- fc(u, s.proc(i).proc_state)

A t.proc(i).mailbox(i) = f.,(f,.(u,s.proc(i).proc_state)))

l)u,'ing this phase, the proc_state field is updated with the results of the computation:

L(u, s.proc(i).proc_state)

Also, the mailbox is loaded with the subset of the results to be broadcast as defined by the

function f,. Recall that a processor's own mailbox slot acts as the place to post outgoing

data for broadcast to other processors.

The A/'_, sub-relation defines the behavior_0f a single processor during the broadcast phase:

A/'_,: function[DSstate, DSstate, processors -_ bool] =

( A s, t, i : s.proc;(i).healthy > 0

5) t.proc(i).proc_state = s.proc(i).proc_state

A broadcast_received(s, t, i))

I)uring this l)hase the proc_state field remains unchanged and the broadcast_received relation

holds:

broadcast_received: function[DSstate, DSstate, processors ---* bool] =

(._ s,t,q : (Vp:

s.proc(p).healthy > 0

2) t.proc(q).mailbox(p) - s.proc(l,).mailbox(p)))

This states that each nonfaulty processor q receives the values sent by other nonfaulty pro-

ccssors. If the sending processor l) is faulty, then the consequent of tl,e relation need not hold

and the value found in p's slot of q's mailbox is indeterminate. If the receiving processor q

is faulty, the broadcast_received relation is not required to hold in .N'_,. In this situation, all

of q's mailbox values are unspecified.

The A/_,l_sul)-relation defines the behavior of a single processor during the vote phase:
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A/'_',: function[DSstate, DSstate, processors _ bool] =

( )_ .%Z, i : s.proc(i).healthy > 0

D Z.proc(i).mailbox = s.proc(i).mailbox

A t.proc(i).proc_state

= f,,(s.proc(i), proc_state, ._.proc(i). mailbox))

During this phase the mailbox field remains unchanged anti the local processor state is up-

dated with the result of voting the values l)roa(Icast by tile other processors. The vote

function is named f,,.

Tile AQ, sub-relation defines the behavior of a single processor during the sync phase:

AQ_: function[DSstate, DSstate, processors --_ bool] =

( A .s,l,i: (s.proc(i).healthy > 0
D/.proc(i).proc_state = ,_.proc(i).proc_state)

A (t.proc(i).healthy > 0

D Lproc(i).healthy = 1 + ._.proc(i).healthy))

During the sync phase, the computation state of a nonfaulty processor remains unchanged.

At th(, end of the sync phase, the current fi'ame ends, so the value of healthy is incremented

by one if the processor is to be nonfaulty in the next fi'ame. This is the same condition

al)pearing in the relation allowable_faults of section 3.3. Any processor assumed to be faulty

in the next frame will haw_ its healthy field set to zero. A limit on how many processors

can be faulty simultaneously is imposed by the predicate maj_working. Therefore, not every

possible assignment of values to the healthy fields is admissible; each assignment must satisfy

the Maximum Fault Assumption.

The predicate initial_ds puts forth the conditions for a valid initial state. The initial

phase is set to compute and each element of the DS state array has its healthy field equal to

recovery_period and its proc_state field equal to initial_proc_state.

initial_ds: function[DSstate _ bool] =

( ,\ ._ : s.phase = compute

A (k/i : s.proc(i).healthy = recovery_period

A s.proc(i).proc_state = initial_proc_state))

As before, the constant recovery_period is the number of frames required to fully recover a

processor's state after experiencing a transie,tt fault. By initializing the healthy fields to this

value, we are starting the system with all processors working. Note that the mailbox fields

are not initialized; any mailbox values can appear in a valid initial DSstate.

6 DS to RS Proof

The DS specification performs the functionality of the RS specification in four sequential

steps. Thus, we must show that the "frame" transition function, frame_N_ds,

frame_N_ds(a, t,u)= ( 3:v,y, z : Afd,(.% x, u)A.Afd,(x,y, u)A.Afa,(Y,z, u)A.Md,(z,t, u))

accoml)lishes the same function as a sitigle transition of the RS level transition function

Af_(s, t, u) under an apl)ropriate mapping function.
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6.1 DS to RS Mapping

The DS to RS mapping function, DSmap, is defined as:

DSmap: function[DSstate --, RSstate] = ( A d,_ : ss_update(ds, nrep))

where ss_update is given by:

ss_update: Recursive function[DSstate, nat --, RSstate] =

(Ads, p: if(p=0) V(p>nrep)
then rs0

else ss_update(ds,p - l )

with [(p) := rsproc0

with [(healthy):-ds.proc(p).healthy,

(proc_state) := d.s.proc(p).ptoc_state]]

end if) by ssu_measure

This mapping copies the healthy anti proc_state fields for each processor _s illustrated in

figure 7. To establish that I)S hnplements RS, tile commutativity diagram of figure 8 must

1 2

Ig

RSstate: healthy 1 proc_state healthy g, proc_state
' AA

t •
A A

ix iX

l

II ; IID,qstat,e: healthy ! proc_state healthy

mailbox

i

ix

2
; if'
', proc_statc
!

nmilbox

n rep

Figure 7: Mapping DS to RS: the DSmap function

be shown to commute. To establish that the diagram commutes, the following formula must

])e proved.

frame_commutes: Theorem

s.phase = compute A frame_N_ds(,s, L, u) 2) Af,,(DSmap(s), DSmap(t), u)

Note that to make the correct correspondence, we must consider only DS states found at the

I)eginning of each frame, namely those whose 1)h_se is compute. Refer to figure 4 on page 12

for a visual int(,rl>retation of this theorem.

It is also necessary to show that the initial states a.re mapped properly:
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N,,(_', t', u)
SI . t t

DSmap

X_,(s, t, u)
s * t

DSrnap

Figure 8: Commutative Diagram ['or DS to RS Proof

initial_maps: Theorem initial_ds(s) D initial_rs(DSmap(s))

Several basic lemmas follow from the definition of the mapping function:

map_l: Lemma DSmap(s)(i).healthy = s.proc(i).healthy

map): [.,emma DSmap(s)(i).proc_state = s.proc(i).proc_state

map_3: Lemma allowable_faults(s, t) 2) RS.allowable_faults(DSmap(s), DSmap(t))

map_4: Lemma RS.good_values_sent(DSmap(s), u, w) = good_values_sent(s, u, w)

map_5: Lemma RS.voted_final_state(DSmap(s), DSmap(t), u, h, i)

= voted_final_state(s, t, u, h, i)

map_7: Lemma RS.maj_working(DSmap(s)) = DS.maj_working(s)

6.2 The Proof

The proof of the frame_commutes theorem involves the expansion of the frame_N_ds relation

and showing tha.t the resulting formula logically implies .N',.,(DSmap(s), DSmap(t),u). We

begin with the dc[inition of frame_N_ds:

frame_N_ds(s,t,u) = (3 x,y,z : .N_,_(s,x,u) A .N'd,(x,y,u) A JY'd,(y,z,u) A

Since s.phase = compute, JV'd,(S, x, u) can be rewritten as:

A/_,_,(s, x, u) = maj_working(x) A x.phase = broadcast
A (V i: x.proc(i).healthy = s.proc(i).healthy A .N'_,(s,x,u,i))

Substituting for A/'a,(s, x, u) we obtain
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s.phase = compute A frame_N_ds(s, t, u)

D ( 3 x, y_ z : maj_working(x)

A (Vi : x.phase = broadcast
A x.proc('/).healthy = s.proc(/).healthy A A/'_, (s, x, u, i))

^ _'_,(_, y, ,,,)̂ X,_.(_,_, ,,) ^ 2¢d.,(_,t, ,,))

Next, expand .h/'_s, the Af_ term fl)r tim broadcast phase, and combine universal quantifiers:

s.phase = compute A frame_N_ds(s, t, u)

D ( 3 x,y,z: maj_working(x) A maj_working(y)

A (Vi : x.phase = broadcast

A x.proc(i).healthy = s.proc(i).healthy

A (s.proc(i).healthy > 0

::) x. proc(i), proc_state = f_(u, s. proc(i), proc_state))

A y.phase = vote

A y.proc(i).healthy = x.proc(i).healthy

A (x.proc(i).healthy > 0

D (y.proc(i).proc_state = x.proc(i).proc_state

A (Vj : x.proc(j).healthy > 0

3 y.proc(i).mailbox(j) = f,(x.proc(j).proc_state)))))

AH_s(.,_,=,,,)A yc_.,(z,t, ,,))

Simplifying to eliminate x yields:

s.phase = compute A frame_N_ds(s, t, u)

::) (3y, z : maj_working(y)

A (V i : y.phase = vote

A y.proc(i).healthy = s.proc(i).healthy

A (s.proc(i).healthy > 0

::) (y.proc(i).proc-state = fc(u, s.proc(i).proc_state)

A (Vj : s.proc(j).healthy > 0

y.proc( i).mailbox(j) = f_( (y.proc(j) ).proc_state) ) ) ) )

AXdo(y,:,,_)A .V2(z,t,u))

Expanding the ACa, term for the third phase and simplifying produces:

s.phase = compute A frame_N_ds(s, t, u)

( 3 z : maj_working(z)

A (Vi : z.phase = sync

A z.proc(i).healthy = s.proc(i).healthy

A (s.proc(i).healthy > 0

z.proc(i).proc_state = fv(f_(u, s.proc(i), proc_state), z.proc(/).mailbox)

A (Vj : s.proc(j).healthy > 0

D z.proc(i).mailbox(j) = f_(f_(u, (s.proc(j)).proc_state)))))

A JV'ds(Z,t, u))

Expau(ling thc fourth phase A/'a, term and simplifying gives:
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s.phase = compute A frame_N_ds(s, l, u)

D (3 z : maj_working(t)

A (Vi : t.phase = compute

A (s.proc(i).healthy > 0
D _.proc(i).proc_state = f,,(fc(U, s.proc(i).proc_state), z.proc(/).mailbox)

A (Vj : s.proc(j).healthy > 0
D z.proc(i).mailbox(j) = f.,(f_(u, (s.proc(j)).proc_state))))

A (t.proc(/).healthy > 0
D t.proc(i).healthy = I + s.proc(i).healthy)))

Letting h(i) = z.proc(i).mailbox,

s.phase = compute A frame_N_ds(s, l, u)

D maj_working(/.)

A (q h : (Vi :/.phase = compute

A (t.proc(i).healthy > 0
D t.proc(i).healthy = ] + s.proc(i).healthy)

A (s.proc(i).healthy > 0
D t.proc(i).proc_state = f_(fc(U,s.proc(i).proc_state), h(i))

A (Vj : s.proc(j).healthy > 0

D h(i)(j) = fs(fc(u, (s.proc(j)).proc_state))))))

This must be shown to logically imply .Mr_(DSmap(s), DSmap(t), u), which can be rewrit-

ten as:

(3 h : (Vi : s.proc(i).healthy > 0

D(Vj: s.proc(j).healthy > 0 D h(i)(j) = fs(fc(u,s.proc(j).proc_state)))

A t.proc(i).proc_state = f_(f_(u,s.proc(i).proc_state), h(i))))

A allowable_faults(s, t))

The first conjunct can be seen to follow by inspection. By expanding allowable_faults,

allowable_faults: function[RSstate, RSstate --* bool] =

( ,_ s, t : maj_working(t)

A (Vi:/(/).healthy > 0 D (t(i)).healthy = 1 + s(i).healthy))

the second conjunct can be seen to follow as well. Q.E.D.

7 DA Specification

Tilt' DA specification performs the same functions as the DS specification; however, explicit

consideration is given to tile timing of the system. Every processor of the system has its own

clock and consequently task executions on one processor take place at different times than

on other processors. Nevertheless, the model at this level explicitly takes advantage of the

fact that the clocks of the system are synchronized to within a bounded skew 6. Therefore,

it, is necessary to give an overview of clock synchronization theory beh)re elaborating the DA

specification.
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7.1 Clock Synchronization Theory

In this section we will discuss the synchronization theory upon which the DA specification

depends. Although the RCP architecture does not depend upon any particular clock synchro-

nization algorithm, we have used the specification for the interactive consistency algorithm

([CA) [9, 8] since EHDM specifications for [CA already exist.

In this section we show the essential aspects of this theory. The formal definition of a

clock is fundamental. A clock can be modeled as a flmction from real time [ to clock time T:

C(0 = T or as a function from clock time to real time: c(T) = [. Since the ICA theory was

expressed in terms of the latter, we will also be modeling clocks as functions from clock time

to real time. We must be careful to distinguish between an uncorrected clock and a clock

which is being resynchronized periodically. We will use the notation c(T) for a uncorrected

clock and rt(i)(T) to represent a synchronized clock during its ith frame, s

Good clocks have different drift rates with respect to perfect time. Nevertheless, this

drift rate is bounded. Thus, we can define a good clock as one whose drift rate is strictly

bounded by p/2. A clock is "good", (i.e. a predicate good_clock(T0, T,_) is true), between

clock times To and T,, iff:

( V T,,T_ : To <_T, < T_ A To < T2 < T_
D Ic,(T,)- cp(T,)- (T," T:)I< *IT,- T21)

The synchronization algorithm is executed once every frame of duration frame_time. The

notation T(0 is used to represent the start of the ith frame, i.e., (T o + i * frame_time). The

notation T E R(0 means that T falls in the ith frame, i.e.,

(3 H : 0 < H < frame_time A T = T 0) + H))

During the ith fl'ame the synchronized clock on processor p, rip, is defined by:

rtp(i,T) = %(T + Corr_ '})

where Corr is the cumulative sum of the corrections that have been made to the (logical)

clock. It is defined by :

Corr_O = if i > 0 then Corr_ i-I} + A (_-1}

else initial_Corr(p)
end if

where initial_Corr(p) is conveniently equated to zero (i.e. Corr,°) = 0). The function A_"-')

is the correction factor for the current frame as computed by the clock synchronization

algo,'ith,n.

We now define what is meant by a clock being nonfaulty in the current frame. The

predicate nonfaulty_clock is defined as follows:

AI: Lemma nonfaulty_clock(p, i) = goodclock(p, T (°J + Corr_v°), T (¢+1) + Corr(pO)

8This differs from the notation, c(0(T), used in [8].
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Note that in order for a clock to be non-faulty in the current frame it is necessary that it

has been working continuously fi'om time 0. 9

The clock synchronization theory provides two important properties about the clock

synchronization algorithm, namely that the skew between good <:locks is bounded and that

the correction to a good clock is always bounded. The maxinnmm skew is <lenotod by 6 and

the maximum correction is denoted by :E. More formally,

Clock Synchronization Conditions: For all nonfaulty clocks p and q:

$1: VT E It('): J,'I(')(T)- r/_')(T)J < 6

s2: ICo. '+')- Co.7)1<
The v,_!ue of _ is determined by several key parameters of the synchronization system:

P, (,60, m, nrep listed in table 2. The formal definition of p has ah'eady been given. The

p&r&nlel,er

P

,%

771

nrep

meaning

upper l)ouncl on drift rate of a good clock

upper bound on error in reading another processor's clock

upper bound on initial skew

maximum number of faulty clocks tolerated

number of clocks in system

Table 2: Meaning of Synchronization Parameters

parameter e is a bound on the error in reading another processor's clock. The synchroniza-

tion algorithm requires that every processor in the system obtain an estimate of its skew

relative to every other clock in the system. The notation A(0 is used to represent the skewqp
between clocks q and p during the ith frame as perceived by p. Thus, the real time at which

p's clock reads To + A_) should be very close to the real time that q's clock reads To. This

is constrained by an axiom to be less than e:

Axiorn If conditions SI and $2 hold throughout the ith fi-am(,, then

nonfaulty_clock(p, i) A nonfaulty_clock(q, i)

< sync_time

^ ( B7;): To E S(') ^ + - rt_')(To)l <• qp :

The amount of time reserved for executing the clock synchronization algorithm is denoted

by the constant sync_time.

'['he third parameter, 60, is constrained as follows:

h0: Axiom ]rt_°)(O)- rl °)(0)l < 60

9This is a limitation not of the operating system, but of existing, lnechanically verified fault-tolerant clock

synchronization theory. Future work will concentrate on how to make clock synchronization robust in the

presence of transient faults.
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Thus, 60 bounds the initial clock skew.

The property that the ICA clock synchronization algorithm meets the two synchroniza-

tion conditions S1 and $2 was proved in [8]. These were named Theorem_l and Theorem_2:

formally as:

Theorem_l: Theorem

SIA(i) D (Vp, q: (VT:

nonfaulty_clock(p,i)A nonfaulty_clock(q,i)A T E R(0

D _<

Theorem;): Theorem ICorr_i+')-Corr7) I<

where the premise for Theorem_l, SIA, isdefined by:

(hi : (Vr : (m + 1 <= ," and v <= n) D nonfaulty_clock(r, i)))

and where m is equal to th(' maximum number of faulty processors.

We have used the following equivalent but more convenient premise: S1A : function[period --*

bool] == ( I i: enough_clocks(i)).'° where

enough_clocks: function[period ---, bool] =

( )_ i : 3 • num_good_clocks(i, nrep) > 2 • nrep)

alld

num_good_clocks: Reeursive function[period, nat --, nat] =

(li, k: ifk=0Vk> nrep
then 0

elsif nonfaulty_clock(k, i)

then 1 + num_good_ciocks(i, k - 1)

else num_good_clocks( i, k - 1)

end if) by num_measure

The lheorems prow;d in [8] also depend upon the following axioms not mentioned above.

A2_aux: Axiom Ali) = 0
PP

CO: Axiom m < nrep A m < nrep - hum_good_clocks(i, nrep)

C1" Axiom frame_time > 3 * sync_time

¢2: Axiom sync_time > E

C3: Axiom E > A

C4: Axiom A > _ + c + _ • sync_time

C5: Axiom 6 > 60 + p * frame_time

C6: Axiom 6 > 2 • (c + p, sync_time) + 2 • m • A/(nrep - m)

+ nrep • p, frame.time/(nrep - m) + p • A

+ nrep, p • E/(nrep - m)

mNote that this fi_rm also s.bsumes axiom C,0below.
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With the S1Apremiseexpanded,the main synchronizationtheorembecomes:

sync_thm: Theorem enough_clocks(i)

D ( Vp, q : ( VT : T 6 R (i) A nonfaulty_clock(p, i) A nonfaulty_clock(q, i)

Irt(_0(T)- ,.t_i)(T)l < g))

Tile proof that DA implements DS depends crucially upon this theorem.

7.2 The DA Formalization

Now that a clock synchronizatioa theory is at our disi>osa] , the DA model can be specified.

Two new fichts are added to the state vector associated with each processor: Iclock and

cure_delta:

da_proc_state: Type = Record healthy : nat,

proc_state : Pstate,

mailbox : MBvec,

Iclock : Iogical_clocktime,
cure_delta : number

end record

'File complete DAstate is:

DAstate: Type = Record phase : phases,

sync_period : nat,

proc : da_proc_array

end record

where da_proc_state is defined by:

da_proc_array: Type = array [processors] of da_proc_state

The sync_period field holds the current frame of the system. Note this does not represent the

frame counter on any particular processor, but rather the ideal, unbounded frame counter.

The Iclock field of a DAstate stores the current value of the processor's local clock. The

real-time corresponding to this clock time can be found through use of the auxiliary function

da_rt.

da_rt: function[DAstate, processors, Iogical_clocktime --+ realtime] =

( A da,p, T : %(T + da.proc(p).cum_delta)

This function corresponds to the rt function of the clock synchronization theory. Thus,

da_rt(s,p,T) represents processor p's synchronized clock. Given a clock time T in the current

fl'ame (s.sync_period), cla_rt returns the real-time that processor p's clock reads T. The current

value of the cumulative correction is stored in the field cure_delta.

Every frame the clock synchronization algorithm is executed, and A(0 is added to cure_delta.

Note that this corresponds to the Corr flmction of the clock synchronization theory. The

relationship between %, da_rt, and cure_delta is illustrated in figure 9.
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real time

/ da_rtp(T}-_.._

%(T) _.L

clock time (T)

cum_delta

Figure 9: Relationship between cp and da_rt

Since the original ICA clock theory was not cast into the state-machine framework used

in this work, it is necessary to show that the the da_rt function is equivalent to the rt

function of the clock synchronization theory. The first step is to equate the period of the

clock synchronization with the length of a frame in the operating system. Since the length

of the period in the clock theory is a parameter of the theory, this is accomplished by setting

it equal to frame_length. Similarly, the execution time of the synchronization algorithm is a

parameter of the clock theory which is set equal to sync_period, n The clock synchronization

theory also requires that a constraint be placed on the duration of the sync phase:

AXIOM: duration(sync) >= sync_period

The next step is to equate tl,e clocks of the state-machine with the clocks in the sync theory.

This is done by proving the following lemma:

da_rt_lem" Lemma reachable(da) A nonfaulty_clock(p, da.sync_period)

da_rt(da, p, 7') = r t(pa_'sync-peri°d)(T)

This lemma follows from the fact that in every period (during the sync phase) the cure_delta

field is incremented by Ai:

t.proc(i).cum_de[ta = ,.proc(i).cum_delta + A_ sync-peri°d

The a lgorithna that is specified in the clock theory uses Ai as its correction factor each frame.

The exact same correction factor is used in the DA model. T!ms, the RCP system executes

t"rhese are named n a,,d S i,i'ig, 81. Ilowew'.r, these names eo,,flicted with their use in [1].
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the samealgorithm as specifiedin the clock theory, and cure_deltawill alwaysbe equal to
Corr. Thus, rtp = da_rtp.

The specification Of time-critical behavior in the DA model is accomplished using the

da_rt function. For example, the broadcast_received fi,nction is expressed in terms of da_rt:

broadcast_received: function[DAstate, DAstate, processors --_ bool] =

( ,Xs,t,q : (Vp :
(s.proc(p).healthy > 0

A da_rt(s, p, s.proc(p).lclock) + max_comm_delay

_< da_rt(t, q, t.proc(q).lclock)

2) t.proc(q).mailbox(p) = s.proc(p).mailbox(p)

'l'hl,s, the data in the incoming bin p on processor q is only defined to be equal to the value

broadcast by p (i.e.s.proc(p).mailbox(p)) when the real time on the receiving end (i.e.

da_rt(t,q, t.proc(q).lclock) is greater than da_rt(s,p,s.proc(p).lclock) plus max_comm_delay.

This specification anticipates the design of a communications system that can deliver a

message in a bounded amount of time, in particular within max_comm_delay units of time.

In the DA level there is no single transition that covers the entire frame. There is only a

transition ,'elation for a phase. The Afd_ relation is:

JV'a_: function[DAstate, DAstate, inputs -, bool] =

( _, s,t, u: enough_hardware(t)A t.phase = next_phase(s.phase)

A(Vi: ifs.phase=sync

then A/'_(s, t, i)

else t.proc(i).healthy = s.proc(i).healthy

A/.proc(i).cum_delta = s.proc(i).cum_delta

A t.sync_period = s.sync_period

A (nonfaulty_clock(i, s.sync_period)

clock_advanced(s.proc(i).lclock, t.proc(i).lclock, duration(s.phase)))

A (s.phase = compute Y) .hf_(s, l, u, i))

A (s.phase = broadcast _ A/'_(s, t, i))

A (s.phase = vote D A/'_(s,t,i))

end if))

Note that the transition to a new state is only valid when the enough_hardware function holds
in the next state. This hmction is defined ms follows:

enough_hardware: function[DAstate ---, bool] =

( )t t : maj_working(t) A enough_clocks(t.sync_period))

maj_working is defined identically in RS, DS, and DA. Its definition is presented in section 3.3.

The definition of enough_clocks appears in section 7.1.

As in the DS level, the state transition relation A/'da is defined in terms of four sub-

rclations, each of which applies to a parti('ular phase type. These are called Aft=, A/'ab=,A/'_

and XJ .
The A/'_ sub-relation is:
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A/'_" function[DAstate, DAstate, inputs, processors --_ bool] =

(._ s,t,u,i :

s.proc(i).healthy > 0

2) t.proc(i).proc_state = f_(_L,._.proc(i).proc_state)

A t.proc(/).mailbox(i) = f,(f_(',,, s.proc(i).proc_state))

Just as in the corresponding DS relation, the. proc_state field is updated with the results of

the computation, fc(u,._.proc(i).proc_state). Also, the mailbox is loaded with the subset of

the results to be broadcast as defined by the function f,. Unlike the DS model, the local

clock time is changed in the new state. This is accomplished by the predicate clock_advanced,

which is not based on a simple incrementation operation because the number of clock cycles

consumed by an instruction stream will exhibit a small amount of variation on real processors.

The function clock_advanced accounts for this variability, meaning the start of the next phase

is not deterministically related to the start time of the current phase.

I/: number

clock_advanced: function[Iogical_clocktime, Iogical_clocktime, number --, bool] =

(._,\',_D:X + D.(I-t/) < Y A Y_< X + D.(I +u))

where u represents the maximum rate at which one processor's execution time over a phase

can vary from the nominal amount giw:n by the duration function, tJ is intended to be a

nonnegative fractional value, 0 < u < 1. '['he nominal amount of time spent in each phase

is specified by a function named duration:

duration: function[phases _ Iogical_clocktime]

However, the actual amount of clock time spent in a phase is not fixed, but can vary within

limits. For example, the actual duration of the compute phase can be anything from (1 -

u) • duration(compute) to (1 + u) • duration(compute). The value of u is a parameter of the

specification and can be set to any desired value. However, there are some constraints on

the implementation that are expressed in terms of u:

broadcast_duration: Axiom

duration(broadcast ).( l-_ )-2.,,.duration( compute )-IJ*d u ration (broadcast))-

>_ max_comm_delay

broadcast_duration2: Axiom

duration(broadcast) - 2 • u, duration(compute) - _,• duration(broadcast) >= 0

pos_durations: Axiom

0 <= (1 -- _') * duration(compute) A 0 <= (1 -- L,) • duration(broadcast)

A 0 <= (1 - I/) • duration(vote) ^ 0 <= (1 - v) • duration(sync)

all_durations: Axiom

(1 + v) • duration(compute) + (1 + t/) • duration(broadcast)

< frame_time
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The constants p and 6 are drawn from the clock synchronization theory, as explained in

section 7.1.

There may be many possible causes of the variation in execution times on different

processors. The asynchronous interface between a processor and its memory can leaxt to

different execution times between two processors even when they execute exactly the same

instructions on exactly the same data. Another possible cause of different execution times

could be the use of different schedules on different processors.

The Aft= sub-relation is:

JV'_=: function[DAstate, DAstate, processors --+ bool] =

(A s,t,i : s.proc(i).healthy > 0

D t. proc(i), proc_state = ._.proc(i), proc_state

A broadcast_received(a, t, i))

As in the corresponding DS relation, the proc_state field remains unchanged and the broad-

cast_received relation must hold. When it holds, all the nonfaulty processors receive the

values sent by other nonfat, lty processors. IIowever, this is now contingent upon certain

constraints on the times thal, things happen.

The Aft, sub-relation is:

Aft=: function[Dhstate, Ohstate, processors _ bool] =

( )_ s, t, i : s.proc(i).healthy > 0

D t.proc(i).mailbox = s.proc(i).mailbox

A t.proc(i).proc_state = f,,(s.proc(i).proc_state, s.proc(i).mailbox))

As before, the mailbox field remains unchanged and the local processor state is updated with

the result of voting the values broadcast hy l,he other processors.

The Af$_ sub-relation is:

.A/',_a:function[OAstate, DAstate, processors ---, bool] =

( A s,t,i: (s.proc(i).healthy > 0

D t.proc(i).proc_state = s.proc(i).proc_state)

A (Lproc(i).healthy > 0

2) t.proc(i).healthy = 1 + s.proc(i).healthy

A nonfaulty_clock(i,/.sync_period))

A Lsync_period = I + s.sync_period

A (nonfaulty_clock(i, s.sync_period)

D Lproc(i).lclock = (1 + _.sync_period) • frame_time
,., .... • sync period,,

Al.proc(i).cum_delta = s.proc(z).cum_oelta-t-z.xi - ))

During the sync phase, the processor state remains unchanged. As in the DS specification,

the healthy field is incremenl,('d by one. Unlike the DS model, the local clock time is changed

in the new state. For this sub-relation, the clock is not advanced in accordance with the

fimction clock_advanced, because this pha.se is terminated by a clock interrupt. At a pre-

determined local clock time, the clock interrupt fires and the next frame is initiated. The

specification requires that the interrupts fire at clock times that are integral multiples of the

frame length, frame_time.
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In addition to requirements conditioned on having a nonfaulty processor, the DA speci-

fications are concerned with having a nonfaulty clock as well. It is assumed that the clock

is an independent piece of hardware whose faults can be isolated from those of the corre-

sponding processor. Although some implementations of a fault-tolerant architecture such as

RCP could execute part of the clock synchronization function in software, thereby making

clock faults and processor faults mutually dependent, we assume that RCP implementations

will have a dedicated hardware clock synchronization function. This means that a clock can

continue to function properly during a transient fault period on its adjoining processor. The

converse is not true, however. Since the software executing on a processor depends on the

clock to properly schedule events, a nonfaulty processor having a faulty clock may produce

errors. Therefore, a one-way fault dependency exists.

Clock Function

Faulty Voting

Clock sync

Nonfaulty Voting

Clock sync

Processor

Faulty

N

N

N

Y

Recovering

N

N

N

Y

Working

N

N

Y

Y

Figure 10: Relationship of clock and processor faults.

Figure 10 summarizes the interaction between clock faults and processor faults. It shows

for each combinal, ion of fa.ttlt mode whether a processor can ma.ke a sound contribution to

voting the state variables and whether a clock can properly contribute to clock synchroniza-

tion. These conditions have been encoded in the various DA specifications. In paxticular,

the relation A/'_ shown above requires that for a processor to be nonfaulty in the next frame

it must have a nonfaulty clock through the end of that frame. Recall that the definition of

nonfaulty clock requires that it be continuously nonfaulty from time zero. 12

The predicate initial_da puts forth the conditions for a valid initial state. The initial phase

is set to compute and the initial sync period is set to zero. Each element of the DA state array

has its healthy field equal to recovery_period and its proc_state field equal to initial_proc.state.

initial_da: function[DAstate -_ bool] =

( A a : s.phase = compute A s.sync_period = 0

A (V i : s.proc(i).healthy = recovery_period

A ,_.proc(i).proc_state = initial_proc_state

A s.proc(i).cum_delta = 0

^ s.proc(i).lclock = 0 A nonfaulty_clock(i, 0)))

As bah>re, the constant recovery_period is the number of frames required to fully recover a

processor's state after experiencing a transient fault. By initializing the healthy fields to this

I_This does not represent a deficiency in the design of the DA model but rather is a limitation imposed

by the existing, mechanically verified clock synchronization algorithm. Future work will concentrate on

liberating the clock synchronization property from this restrietion.
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value, we arestarting the systemwith all processorsworking. Note that the mailbox fields

are not initialized; any mailbox values can appear in a valid initial DAstate.

8 DA to DS Proof

8.1 DA to DS Mapping

The DA to DS mapping function, DAmap, is defined as:

DAmap: function[DAstate --* DSstate] =

( ._ da: ss_update(da, nrep) with [(phase):= da.phase])

where ss_update is given by:

ss_update: Recursive function[DAstate, nat _ DSstate] =

( _ da, k : if (k = 0) V (k > nrep)
then ds0

else ss_update(da, k- 1)

with [(proc)(k) := dsproc0

with [(healthy) := da.proc(k).healthy,

(proc_state) := da.proc(k).proc_state,

(mailbox) := da.proc(k).mailbox]]

end if) by da_measure

Thus, the Iclock, cum_delta, and sync_period fields are not mapped (i.e., are abstracted away)

arid all of the other fields are mapped identically. To establish that DA implements DS,

the commutativity diagram of figure 11 must be shown to commute. To establish that the

Ar_,(s', t', u )
S! , t t

DAmap

W'do(._,t, _L)
S , t

DAmap

Figure 11: Commutative Diagram for DA to DS Proof

diagram commutes, the following formulas ml,st be proved:

phase_commutes: Theorem reachable(s)hHd_(S, t, u) 3 ACa_(DAmap(s), DAmap(t), u)

initial_maps: Theorem initial_da(s) 3 initial_ds(DAmap(s))
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The lemmas below directly follow from the definition of tile mapping.

map_l: Lemma DAmap(s).proc(i).healthy = .s.proc(i).healthy

map_2: Lemma DAmap(s).proc(i).proc_state = s.proc(i),proc_state

map_3: Lemma DAmap(s).phase = ,_.phase

map_4: Lemma DAmap(s).proc(/).mailbox = s.proc(/).mailbox

map_7: Lemma DS.maj_working(DAmap(_)) = DA.maj_working(s)

8.2 The Proof

The phase_commutes theorem must be shown to hold for all four phases. Thus, the proof is

decomposed into four separate cases, each of which is handled by a lemma of the form:

phase_com_,¥: Lemma

s.phase = X A A/'a_(s, t, u) D A/'d,(DAmap(s), DAmap(t),u)

where .l" is any one of {compute, broadcast, vote, sync}. 'FILe proof of tiffs theorem requires

tile expansion of the A/'a_ relation a.nd showing that the resulting formula logically implies

A/'a,(l)Amap(s), DAmap(t), u).

8.2.1 Decomposition Scheme

q'he proof of each lemma phase_com_X is facilitated by using a common, general scheme for

each phase that further decomposes the proof by means of four subordinate lemmas. The

general form of these lemrnas is as follows:

Lemma 1: s.phase = A' AA/'a=(s,t,u) D (Vi : .A/'_(s,/, i))

Lemma 2: s.phase = X A.N'_(s,t,i) D AFaa_(DAmap(s),DAmap(t),i)

Lemma 3: s.phase = ,¥ A DS.maj_working(tt)A (Vi : Arj_(ss, tt,i)) D

A/'a,(ss,tt,u)

Lemma 4: s.phase = ,V A A/_a,(s, t, u) D DS.maj_working(DAmap(t))

A few differences exist among the lemmas for the four phases, but they adhere to this scheme

fairly closely. The phase_com_A' lernma follows by chaining the four lemmas together:

.l"w,,o(,,t,,,) z (v i:
(V i: .N"f(DAmap(s), DAmap(t),i)) 2) J_a,(DAmap(s), OAmap(t), u)

In three of the four cases above, proofs for the lemmas are elementary. The proof of

I_emma 1 h_llows directly from the definition of A/'a_. Lemma 3 follows directly from the

definition of A/'a.,. I_emma 4 follows from the definition of A/'a_, enough_hardware and the basic

mapping lemmas.

Futherrnore, in three of the four phases, the proof of Lemma 2 is straightforward. For

all but the broadcast phase, l_emma 2 follows from the dcfiuitiou of.M,i r, N'aa_, and the basic

nmppitag lemmas.
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ltowever, in the broadcastphase, Lemma2 from the schemeabove, which is named
corn_broadcast.2, is a much deeper theorem. The broadcast phase is where the effects of

asynchrony are felt; we must show that interprocessor communications are properly received

in the presence of asynchronously operating processors. Without clock synchronization we
would be unable to assert that broadcast data, is receiw_d. Ilence the need to invoke clock

synchronization theory and its attendant reasoning over inequMities of time.

8.2.2 Proof of corn_broadcast_2

The lemma corn_broadcast_2 is the most difficult of the four lemmas for the broadcast phase.

It h)llows from the definition of N'as_, N'_,, the basic mapping lemmas and a fairly difficult

lemma, corn_broadcast_S:

corn_broadcast_S: Lemma

reachable(_) A Afd_(s, t, u) A s.phase = broadcast

A s.proc(i).healthy > 0 A broadcast_received(s, L, i)

D broadcast_received(DAmap(_), DAmap(t), i)

This lemma deals with the main difference between the DA level and the DS level--the

timing constraint on the function broadcast_received:

broadcast_received: function[DAstate, DAstate, processors _ bool] =

(As,t,q:(Vp:

(s.proc(p).healthy > 0

Ada_rt (s, p, ( s.proc(p).lclock)+max_com re_delay < da_rt(t, q, ¢.proc(q).lclock )

t.proc(q).maiJbo (p)=  .p oc(p).maiJbo×(p)

The tinting constraint

da_rt(s, p, s.proc(p).lclock) + max_comm_delay < da_rt(t, q, t.proc(q).lclock)

must be discharged in order to show that the DA level implements the DS level. The following

lemma is instrumental to this goal.

ELT: Lemma T2 _>7'j+ bb A (T_ > 7"')A (bb > T °)A T2 E R (sp)A 7'IE R (sp)

A nonfaalty_clock(p, sp) A nonfaulty_dock(q, sp) A enough_clocks(sp)

>_ + (1 - Ibbl-6

This lemma establishes an important property of timed events in the presence of a fault-

tolerant clock synchronization algorithm and is proved in the next subsection. Suppose that

on processor q an event occurs at TI according to its own clock and another event occurs on

processor p at time T2 according to its own clock. Then, assuming that the clock times fall

within the current frame and the clocks are working and the system still is safe (i.e. more

than two thirds of the clocks are non-faulty), then the following is tn, e about the real times

of the events:

v/_sP)('l:2) >_ r/_SP)(7]) + (1 - e2), Ibbl-_
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where bb = T2 - 7'1, 7'1 = s.proc(p).lclock and 7_ = t.proc(q).lclock.

If we apply this lemma to tile broadcast phasic, letting T1 be tile time that the sender

loads his outgoing mailbox bin and T2 is the earliest, time that the receivers can read their

mailboxes (i.e. at the start of tile vote phase), we know that these events are separated in

tinw by more than (1 - _) * Ibbl- 6.

In this case bb is approximately equal to duration(broadcast). However, since there may

be some variations in the time spent in the compute and broadcast phases on different

processors (i.e. they can drift from the nominal value at a rate less than u), the analysis is a

little tricky. First consider the situation where processor q is sending a message to processor

p during its broadcast phase. Let r be the state at the start of the compute phase, s be the

state at the start of the broadcast phase and t be the state at the start of the vote phase:

r co____te s broadcast_ t

Then, let

Rq =

Sq =

Tq =

Rp =

Sp =

Tp =

This is ilhtstrated in figure 12.

the clock time at the start of the compute phase on processor q

the clock time at the start of tile broadcast phase on processor q

the clock time at the start of the vote phase on processor q

the clock time at the start of the compute phase on processor p

the clock time at the start of the broadcast phase on processor p

the clock time at the start of the vote phase on processor p

By the definition of clock_advanced, the following can be

Rq Sq Tq

processor q: I compute [ broadcast I

processor p: [ compute [

• ,° . ".

•..message

broadcast l"

Rp Sp Tp

established:

Figure 12: Relationship between phase times on different processors

( 3 pdurc, pdurb, qdurc, qdurb :

near(pdurc, compute) A near(pdurb, broadcast)

A near(qdurc, compute) A near(qdurb, broadcast)

A Rp = Rq
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A Sq = Rq -_-qdurc
A Tp = Sq - qdurc + pdurc -I- pdurb))

where near(dur,ph) is given by

near(dur,ph) = (1 - u) * duration(ph) _< dur < (1 -I- t:) • duration(ph))

This result depends upon a critical invariant of the system:

(Vp, q :s.phase = compute A

nonfa ulty_clock(p, s.sync_period) A nonfa ulty_clock (q, s.sync_period)

3 s.proc(p).lclock = s.proc(q).lclock)

given that the state s is reachable(s). This invariant exists in the system because of the

use of an interrupt timer to initiate the start of a frame on each of the processors at the

pre-determined times i.frame_time. Using tile definition of R (i) and the axioms pos_durations

and all_durations, we obtain:

nonfaulty_clock(p, i) A nonfaulty_clock(q, i)

DSq E R (1) ATpE R (i)

A Tp > Sq + duration(broadcast)

- 2 * v * duration(compute) - u • duration(broadcast)

where i is the current synchronization period (i.e. i = r.sync_period = s.sync_period =

t.sync_period). We now have a relationship between tim clock time that the message was

sent and the clock time that it was received in a form appropriate for application of the ELT

theorem, hi other words, T._ = Tp, 7'1 = Sq and bb = pdurc- qdurc + pdurb. Thus, we

can convert the relationship between the events expressed in clock times to a relationship

between the real times of these events:

rt(pO(Tp)> rt_0(Sq) + (1 - e). Iduration(broadcast) _ Epsi I _ 6

where Epsi = 2 • u • duration(compute) + u • duration(broadcast). Using the broadcast_duration

implementation axiom:

broadcast_duration: Axiom

duration(broadcast) • (1 - _) - 2 • !: • duration(compute)

- u • duration(broadcast)) - _ > max_comm_delay

we ]laVe:

> rt ')(Sq)+ ma×_comm_delay

Using the da_rt_lem lemma:

da_rt(t, q, Tq) >= da_rt(,% p, Sq) + max_comm_delay

This will discharge the premise of broadcast_ received. Thus,
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com_broadcast_S: Lemma

reachable(s) A A/'d. (s, t, u) A s.phase = broadcast

A s.proc(p).healthy > 0 A broadcast_received(s, t, p)

D broadcast_received(DAmap(s), DArnap(t), p)

Of course there are several technicalities such as the reachable(da) premise that must be dis-

charged in order to apply the da_rt_lem lemma and the other state invariants and establishing

that s.proc(p).healthy > 0 D nonfaulty_clock(p,s.sync_period).

Proof of ELT Lemma: In this section we prove,

Lemma 1 (earliest_later_time Lemma) T_ = T1 + BB

A (T, >_ T °) A (BB >_ T °) A nonfaulty_clock(/,,i) A nonfaulty_clock(q,i)

A enough_clocks(i) A T.2 E R (i) A 7'1 E I_ (i)

:3 rZi.')(T_) > rl_')('r,) + (1 - _) •/BBI- 5

from which the ELF lemma immediately follows.

Proof. This lemma depends primarily upon the definition of a good clock and the synchro-

nization theorem (i.e. sync_thm). The good clock definition yields:

goodclock(q,T°,T_ + BB) A (T_ >_ T °) A (BB > T °)

:3 (1 - _) • IBBI _<cq(T, + BB) - cq(T1)
Acq(T_ + BB)- cv(T_)_< (] + _)* IBBI

Note that the definition of a good clock is defined in terms of the uncorrected clocks, %(T).

Using the definition of rt, we can rewrite the first formula as:

Lemma goodclock(q,'r° ,,1. , i, + Corr,') + BB)

A (T, >_ T °) A ('111+ Corr(q ') >_ T °) A (BB _> T °)

:3 (l - e2)• IBBI _<,.l!,')('r, + BB) - ,'Z_i)(T,)

Art_i)(T_ +BB)- rt_i)(T_) <_ (I + _). IBB I

and obtain a formula in terms of the function rt.

The sync_thm theorem gives us:

enough_clocks(i) A nonfaulty_clock(p, i) A nonfaulty_clock(q, i) A T E R (0

:3 -6 <_ rt_O(T)- rl_')(T) <_

Combining the previous two fornmlas and substituting T_ for T in sync_thm, we obtain:

T2 = T_+ BB A (7'i>_T°)A (T_+ Corr,;)>_T°)A (BB >_T°)A T2 E R(;)

Aenough_clocks( i)Agoodclock( q, T °, T_ C orr_ i) + B B)Anonfa ulty_clock(p, i)A

nonfa ulty_clock(q, i)

,.t_')(_lS)> ,.z_')(T,)+ (] - _), IBBI- g

From the definition of nonfaulty and goodch)ck, we have:

'/'l + BB < T (i+l) A nonfaulty_clock(q, i)

D goodclock(q, 7 '°, Tl + Corr_O + BB)
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Using these la.st two results we haw_:

T2 - T, + BB A 7'2 _< T (i+') A (T, >_ T °) A (Tx + Corr_ _) >_ T °) A (BB >__T °)

A enough_clocks(i) A nonfaulty_clock(p, i) A nonfaulty_clock(q, i) A T2 E R (i)

D rl_i)(T:) > ,'t!/)(T, ) + (1 - 2e) • 18131-

Then from the definition of 1¢.(i), T (1) and the fact that Corr_ °) = 0, we have

ftll: Lemma T2 = 71, + BB h (7', >_ 7 '°) A (7'_ + Corr_O > 7 '°) A (BB >_ T °)

A enough_clocks(i) A nonfauhy_clock(p, i) A nonfaulty_clock(q, i) A 7'2 E R (i)

z _> + (1 - ]BB]-

Using the adj_always_pos theorem from [8], we obtain

ft12: Lemma T1 E R (i) D (T1 + Corr_ i) >_ 7 '°)

The key lemma follows immcdlately from the last two formulas, (ftll and ft12).

9 Implementation Considerations

Although many RCP design decisions have yet to be made, there are a number of implemen-

tation issues that need to be considered early. Some of these have emerged as consequences

of the formalization effort completed in Phase 2. Others are the result of preliminary investi-

gations into the needs of implementations that can satisfy the RCP specifications. Following

is a discussion of these issues and available options.

9.1 Restrictions Imposed by the DA Model

Recall that the DA extended state machine model described in section 2.4 recognized four

dilTerent classes of state transition: L, B, R, C. Although each is used for a different phase

of the frame, the transition types were iatroduced because operation restrictions must be

imposed on implementations to correctly realize tim DA specifications. Failure to satisfy

these restrictions can render an implementation at odds with the underlying execution model,

where shared data objects are subject to the prol)lems of concurrency. The set of constraints

on the DA model's implementation concerns possible concurrent accesses to the mailboxes.

While a broadcast send operation is in progress, the receivers' mailbox values are unde-

lined. If the operation is allowed sufficient time to complete, the mailbox values will match

the original values sent. If insufficient time is allowed, or a broadcast operation is begun

immediately following the current one, the final mailbox value cannot be assured. Further-

more, we make the additional restriction that all other uses of the mailbox be limited to

read-only accesses. This provides a simple sufficient condition for noninterfering use of the

mailboxes, thereby avoiding more complex mutual exclusion restrictions.

Operation Restrictions. l,et s and t be successive DA states, i be the proces-

sor with the earliest value of q(_(i).lclock), and j be the processor with the latest
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valueof cj(t(j).lclock). If s corresponds to a broadcast (B) operation, all proces-

sors must ]lave completed the previous operation of type R by time c_(s(i).lclock),

and the next operation of type B can begin no earlier than time c_(t(j).lclock).

No processor may write to its mailbox during an operation of type B or R.

By introducing a prescribed discipline oll the use of mailboxes, we ensure that the axiom

describing the net effect of broadcast communication can be legitimately used in the DA

proof. Although tlle restrictions are expressed in terms of real time inequalities over all

processors'clocks, it is possible to derive sufficient couditions that satisfy the restrictions and

can be established from local processor specifications only, assuming a clock synchronization

mechanism is in place.

9.2 Processor Scheduling

The DA model of the RCP deals with the timing and coordination of the replicated processors

in a fairly complete manner. The model defines in detail the functionality of the system with

regard to the activities that are necessary to ensure its fault-masking and transient recovery

capal>ility. Nevertheless, the delineation of the task execution process on each local processor

has not been elaborated in any more detail than in the IJS model. This was done deliberately

in order to obtain as general a specification as possible. Thus, the 4-level hierarchy presented

in this paper could be further refined into a set of entirely different kinds of implementations.

They could differ drastically in the types of ta.sk scheduling that are utilized as well as the

type of hardware or software used.

Nevertheless, one aspect of scheduling needs to be carefully controlled, namely the basic

frame structure. The RCP specifications were developed with a very crisp execution model

in mind regarding the basic timing of a frame and its major parts. We assume the existence

of one or more nonmaskable hardware interrupts, triggered by the clock subsystem, that are

used to effect the transition from one frame to the next and one major phase to the next.

As a minimum, the following transitions must be triggered by timer interrupts or an equally

strong hardware mechanism.

Start of frame. The last portion of a frame is reserved for clock synchronization

activities. This includes not only executing the clock synchronization functions, but

also reserving some dead time to be saz_rificed when clock adjustments cause local clock

time discontinuities. An interrupt is set to fire at the proper value of clock time so

that all processors begin the new frame with the same local clock reading.

Beginning of vote phase. After waiting for the completion of broadcast communi-

cation from other processors, the vote phase is begun to selectively restore portions of

the computation state. Also needing to be recovered are any control state variables

used by the operating system. If a transient fault occurs, recovery cannot begin until

the control state is first restored through voting. However, a processor operating after

a transient fault may be executing with a corrupted memory state. The only way to

ensure that corrupted memory does not prevent the eventual recovery of control state

information is to force the vote to happen through a nonmaskable interrupt.
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The useof timer interrupts are highly desirable in other situations, but those listed above
are consideredessential.

Sclmdulingof applications t;Lsksis an area wherethe implementation retains someflex-
ibility owing to our use of a general fault-tolerant computing model in the US and RS
specifications. Often it is consi(h,rcd desirableto achievesome,type of schedulediversity
acrossprocessorsas a meansof gaining more transient fault immunity. A limited way of
accomplishingthis is availableunder the current RCP design. Sincethe specificationsonly
state what must be true after all taskshave beenexecutedwithin a frame, it is possibleto
juggle the order of tasks within eachframeto imi)lementdiversity. For example, if N tasks

are scheduled in a particular frame, each processor may execute them in a different order

up to the limits of data dependency among ta_sks. It is also possible to introduce different

spreads of slack time, dummy tasks, etc. to at:hi(we similar effects.

9.3 Hardware Protection Features

Correct recovery of state information after a transient fault has been formalized in the RS

to US proof. Transient recovery of state information occurs gradually, one cell at a time.

Consequently, depending on the voting pattern used, some tasks will be executing in the

presence of erroneous state information. Implicit in the RS specifications is that computation

of task outputs is not subject to interference by other tasks executing with erroneous data

inputs. In the specifications, this is due simply to the use of a functional representation of

the effects of task execution.

Nonetheless, in a real processor a program in execution can interfcrc with another unless

har(Iware protection mechanisms are in placc. To see why this is so, suppose, for instance,

that task 7'1 is followed by task T 2 in a particular frame and neither's output is voted during

that fi'ame. Suppose further that in the transient fault recovery scheme, T_'s inputs come

from recently voted cells while T1's do not. Thus, we expect T_'s cell to be recovered after this

frame. After a transient fault, Tl may be executing instructions on erroneous data, possibly

overwriting recovered information such as that required by T2. This would invalidate our

assuml)tion that T_'s state is recovered at tile end of the frame.

In a similar manner, interference can be caused in the time domain as well as the data

domain. In the example above, if 7'l's erroneous input causes it to run longer than its upper

execution time. ])ound, 7_ may not get to execute in this frame. Again, this would result in

our assumptions about T._'s output being invalid. Therefore, hardware protection features

are required to prevent both kinds of interference in a system that attempts to recover state

information selectively.

!['here are several well-known hardware techniques for providing this type of protection.

• Memory protection, llardware write protection devices are found on many modern

computer architectures. What I{Cl ) requires is less than a full-blown memory manage-

ment unit (MMU). All that is necessary is to be able to prevent a task in execution

fi'om writing into memory areas h)r which the operating system has not given explicit

write permission. Tile ability to giv e a task write access to a small set of physical

memory regions is sulti(:ient. Generating hardware exceptions such as traps on illicit

write attempts is desiral)h; but not essential.
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Watch-dog timers. Timer interrupts or special-purposetiming logic will be required
to prevent a task from consumingmore than its allotted amount of execution time.
When a watch-dog timer is triggered, the operating system need only dispatch the
next task on the schedule.The actual hardwareusedto carry out this timing function
needsto have adequateresolution and be distinct from the timer interrupts used to
signal the end-of-fi'ameand start-of-voting events.

Privileged Operating Modes. To protect the protection mechanisms,it is usually
necessaryfor a processorto haveat leastoneprivilegedexecutiondomain. Processors
typically provide at least a userdomain and a (privileged) supervisordomain to im-
plementconventionaloperating systemdesigns. In RCP, weneedthesefeaturessothe
taskscannot accidentallychangeor disablethe memorywrite protection or watch-dog
timer functions. There may beother usesfor privileged modeaswell.

It is important to realize that use of these features may be obviated in special cases. If

sufficiently frequent voting is used, for example, it may not be necessary to provide these

features as long as a task is always executing with valid data as input.

9.4 Voting Mechanisms

Exact-match voting of state information exchanged among processors is usually envisioned

as applying the majority function to mailbox values. Note, however, that the voting function

f,,, described in section 3.3, is unspecified and need not 1)e based on the majority operation.

Other types of voting may be used provided that the transient recovery axioms of section 3.5.2

are still true.

A desirable alternative to majority voting is plurality voting. If the values subject to

voting are {a, a, b, c}, for example, a majority does not exist, but a plurality does, namely

{a,a}. The reason this can be valuable is that during a massive transient fault that affects

more than a majority of processors, the Maximum Fault Assumption no longer holds and

transient fault recovery is not assured by the proofs previously described. However, the

likelihood is that the affected processors will not exhibit exactly the same errors. If a

minority of processors is still working, it is likely that the values produced by the replicated

processors will appear something like the example {a, a, b, c}. Hence, plurality voting has a

good chance of recovering the correct state in spite of the absence of a working majority.

This problem has been studied by Miner and Caldwel] [26]. They showed that the

substitution of plurality voting for majority voting can be used to produce identical results

as long as the Maximum Fault Assumption holds:

maj_exists(s) 2) maj(s)= plur(s)

By using an implementation based on plurality voting, we enjoy the same provable behavior

when the Maximum Fault Assumption holds, and we enjoy added transient fault immunity

in the rare case that it is violated. All that is necessary to achieve this is to show that the

choice of function for f,, meets the requirements of the transient recovery axioms.
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10 Future Work

There are four main areas where further work may be profitable.

1. Development of a still more detailed specification and verification that it meets the DA

specification.

2. Development of task sched_ling/voting strategies t}_at satisfy the axioms of the US

rnodel.

3. More detailed specification of the behavior of the actuator outputs.

4. Development of a detailed reliability model.

10.1 Further Refinement

Although the DA specification is a fairly detailed design of the system-wide behavior of the

RCP, there is very little implementation detail about what occurs locally on each processor.

The next level of tile specification hierarchy, the local processor I_P specification will define

the data structures and algorithms to be implemented on each local processor.

At some point the design must be implemented on hardware. It is anticipated that both

standard hardware such as microprocessors and memory management units will be required

as well ms special hardware to implement the clock synchronization and Byzantine agreement

functions. In the same way that this work capitalized on the work done elsewhere in clock

synchronization, the I_P specification will build on the work being performed under contract

to NASA Langley in hardware verification.

NASA Langley ha.s awarded three contracts specifically devoted to formal methods (from

the competitive NASA RFP 1-22-9130.0238). The selected contractors were SRI Interna-

tional, Computational Logic lnc., and Odyssey Research Associates. Another task-assignment

contract with Boeing Military Aircraft Company (BMAC) is being used to explore formal

methods as well. Through this contract BMAC is funding research at the University of

California at Davis and California Polytechnic State University to assist them in the use of

formal methods in aerospace applications. The efforts arc roughly divided as follows:

SRI:

CLI:

ORA:

BMAC:

Clock synchronization, operating system

Byzantine Agreement Circuits, clock synchronization

Byzantine Agreement Circuits, applications

ttardware Verification, formal requirements analysis

The DA specification critically depended upon a clock synchronization property. Previous

work by SRI had verified that the ICA algorithm meets this property. Ongoing work at SRI

is directed at implementing a synchronization algorithm in hardware verifying it. This will

lead to the verification hierarchy shown in figure 13.

Implicit in the RS, OS an(t DA models is the a.ssumption thai, it is possible to distribute

single source information such as sensor data to the redundant processors in a consistent man-
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Figure 13: Clock Synchronization tlierarchy

ner even in tile i)resence of faults. This is the classic Byzantine Generals problem [18]) 3 CLI

is investigating tile formal verification of such algorithms and their implementation. They

have formally verified the original Pease, Shostak, and Lamport version of this algorithm

using the Boyer Moore theorem prover [27]. They have also implemented this algorithm

down to the register-transfer level and demonstrated that it implements the mathematical

algorithm [28]. Future work will concentrate on tying this work together with their verified

microprocessor, the FM8502 [29].

ORA has also been investigating the formal w_rification of Byzantine Generals algorithms.

They have focused on the practical implementation of a Byzantine-resilient communications

mechanism between Mini-Cayuga micro-processors [30]. The Mini-Cayuga is a small but

formally verified microprocessor developed by ORA. It is a research prototype and has not

been fabricated. This communications circuitry could serve as a foundation for the RCP

architecture. It was designed assuming that the underlying processors were synchronized

(say by a clock synchronization circuit). The issues involved with connecting the Byzantine

communications circuit with a clock synchronization circuit and verifying the combination

have not yet been explored.

Boeing Military Aircraft Company and U. C. Davis have been sponsored by NASA,

Langley to apply formal methods to the design of conventional hardware devices. Formal

Verification of the following circuits is currently under investigation:

, a floating-l>oint coprocessor similar to the Intel 8087 (but smaller) [31, 32].

• a DMA controller similar to the Intel 8237A (but smaller) [33].

• microprocessors in llOL (small) [3.t, 35, 36].

• a memory management unit [37, 38].

laFault-tolerant systems, although internally redundant, must deal with single-source information from
the external world. For example, a flight control system is built around the notion of feedback from physical
sensors such a._ accelerometers, position sensors, pressure sensors, etc. Although these can be replicated
(and they usually are), the replicates do not produce identical results. In order to use bit-by-bit majority
voting all of the computational replicates must operate on identical input data. Tiros, the sensor values (the
complete redundant suite) must be distributed to each proce_ssor in a manner that guarantees all working
processors receive exactly the same value even in the pre_nee of some faulty processors.
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The team is currently investigating the verification of a composed set of verified hardware

devices [39, 40, 41]

Researchers at NASA Langley have begun a new effort on a hardware clock synchro-

nization technique that can serve as a foundation for tile RCP architecture. The method,

which is based on the Fault-Tolerant Midpoint algorithm [42], is aimed at a fully independent

hardware implementation. The primary goals of this work are full mechanical verification,

transient fault recovery, and an initialization scheme that provides recovery from large tran-

sient upsets.

10.2 Task Scheduling and Voting

The Phase 1 report described a scheduling system that was based upon a deterministic table.

In the models presented in this paper, this is no longer strictly required although such an

approach clearly fits within the axioms presented in the I.I$ model. However, it is conceivable

that more sophisticated scheduling strategies could also be shown to conform.

10.3 Actuator Outputs

It is important not only that the replicated outputs sent to the actuators (on separate wires)

are identical but that they appear within some bounded time of each other. Although this

bound may not be very small, it is still incumbent upon the verification activity that a bound

be nlathematically established.

10.4 Development of a Detailed Reliability Model

In the Phase 1 paper, a simple reliability model of the RCP system was developed that

demonstrated that the speed at which one must remove the effects of a transient fault is

not very critical. In other words, flushing the effects of a transient fault over an extended

period of time did not significantly decrease the reliability of the system as compared to

extremely fast removal. In this model, a fault anywhere in the processor was sufficient to

render the entire processor faulty. Clearly, in a fully developed RCP, there will be more

than one fault-isolation containment region per processor. The most likely arrangement is to

have a separate fault-containment region for the clocking system and one for the Byzantine

agreement circuitry.

11 Concluding Remarks

In this paper a hierarchical specification of a reliable computing platform (RCP) has been

developed. The top level specification is extremely general and should serve as a model for

many fault-tolerant system designs. The successive refinements in the lower levels of abstrac-

tion introduce, first, processor replication and voting, second interprocess communication by

use of dedicated mailboxes and finally, the asynchrony due to separate clocks in the system.
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Although the first phase of this work was accomplished without the use of an automated

theorem prover, we found the use of the EIIDM system to I)e beneficial to this second phase

of work for several reasons.

• The amount of detail in the lower level models is significantly greater than in the upper

level models. It became extremely diflicult to keep up with everything using pencil

and paper.

• The strictness of the EUDM language (i.e. its requirement to precisely define all vari-

ables and fimctions, etc.) forced us to elaborate the design more carefully.

Most of the proofs were not very deep but ]lad to deal with large amounts of detail.

Without a mechanical proof checker, it would t)e far too easy to overlook a flaw in the

proofs.

The proof support environment of EtlDM, although overly strict in some cases, provided

much assistance in assuring us that our proof chains were complete and that we had

not overlooked some unproven ]emmas.

The decision procedures of EIH)M for linear arithmetic and propositional calculus were

valuable in that they relieved us of tile need to reduce many formulas to primitive

axioms of arithmetic: Especially useful was its ability to reason about inequalities.

Key features of the work completed during Phase 2 and improvements over the results

of Phase I include the following.

Specification of redundancy management and the transient fault recovery scheme uses

a very general model of fault-tolerant computing similar to one proposed by Rushby

[20, 21].

Specification of the asynchronous layer design uses modeling techniques based on a

time-extended state machine approach. This method allows us to build on previous

work that formalized clock synchronization nmchanisms and tlteir properties.

Formulation of the RCP specifications is based on a straightforward Maximum Fault

Assumption that provides a clean interface to the realm of probabilistic reliability

models. It is only necessary to determine the probability of having a majority of

working processors and a two-thirds majority of nonfaulty clocks.

A four-layer tier of specifications has been completely proved to the standards of rigor

of the EItDM mechanical proof system. All proofs can be run on a Sun SPARCstation

in less than one hour.

• Important constraints on lower level design and implementation constructs have been

identified and investigated.

Based on the results obtained thus far, work will continue to a Phase 3 effort, which

will concentrate on completing design formalizations and develop the techniques needed to

produce verified iuq)lementations of RCP architectures.

55



Acknowledgements

The authors are grateful for tile many helpful suggestions given by Dr. John Rushby of SRI

International. Ills suggestions during the early ph,_ses of model formulation and decompo-

sition lead to a significantly more manageable proof activity. The authors are also grateful

to John and Sam Owre for the timely assistance given in the use of the EIIDM system. This

work was supported in part by NASA contract NASl-19341.

References

[1] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L., II: Formal Design and

Verification of a Reliable Computing Plalform For Real- Time Control (Phase 1 Results).

NASA Technical Memorandum 102716, Oct. 1990.

[2] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L.: High Level Design Proof

of a Relial)le Computing Platform. In 2nd IFIP Working Conference on Dependable

Computing for Critical Applications, Tucson, AZ, Feb. 1991, pp. 124-136.

[3] Butler, Ricky W.; Caldwell, James L.; and Di Vito, Ben L.: Design Rationale for a

Formally Verified Reliable Computing Platform. In 6th Annual Conference on Computer

Assurance (COMPASS 91), Gaithersburg, MD, June 1991.

[4] von Itenke, F. W.; Crow, J. S.; Lee, R.; Rushby, J. M.; and Whitehurst, R. A.: EIIDM

Verification Environment: An Overview. In Ilth National Computer Security Confer-

ence, Baltimore, Maryland, 1988.

[5] Computer Resource Management, Inc.: Chapter 14: High Energy Radio Frequency

Fields. In Digital Systems Validation Ilandbook - volume II, no. DOT/FAA/CT-88/10,

pp. 14.1-14.50. FAA, Feb. 1989.

[6] Federal Aviation Administration. System Design Analysis, September 7, 1982. Advisory
Circular 25.1309-1.

[7] Butler, Ricky W.; and Finelli, George B.: The lufeasibility of Experimental Quantifi-

cation of Life-Critical Software Reliability. In Proceedings of the ACM SIGSOFT '91

Conference on Software for Critical Systems, New Orleans, Louisiana, Dec. 1991, pp.

66-76.

Is]

I9]

Rushby, John; and von llenke, Ieriedrich: Formal Verification of a Fault-Tolerant Clock

Synchronization Algorithm. NASA Contractor Report 4239, June 1989.

Lamport, I,eslie; and Melliar-Smith, P. M.: Synchronizing Clocks in the Presence of

Faults. Journal of the ACM, vol. 32, no. 1, Jan. 1985, pp. 52-78.

[10] Siewiorek, Daniel P.; and Swarz, Robert S.: The Theory and Practice of Reliable System

Design. Digital Press, 1982.

56



[11]

[12]

[13]

[141

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

Goldberg, Jack; et al.: Development and Analysis of the Software Implemented Fault-

7blerance (SIFT) Computer. NASA Contractor Report 172146, 1984.

itopkins, Albert L., Jr.; Smith, T. Basil, III; and Lala, Jaynarayan H.: FTMP -- A

ttighly Reliable Fault-Tolerant Multiprocessor for Aircraft. Proceedings of the IEEE,

vol. 66, no. 10, Oct. 1978, pp. 1221-1239.

Lala, Jaynarayan It.; Alger, L. S.; Gauthier, R. J.; and Dzwonczyk, M. J.: A Fault-

Tolerant Processor to Meet Rigorous Failure Requirements. Charles Stark Draper Lab.,

Inc., Technical Report CSDL-P-2705, July 1986.

Walter, C. J.; Kieckhafer, R. M.; and Finn, A. M.: MAFT: A Multicomputer Architec-

ture for Fault-Tolerance in Real-Tinm Control Systems. In IEEE Real-Time Systems

Symposium, Dec. 1985.

Kopetz, tI.; Damm, A.; Koza, C.; Mulazzani, M.; Schwabl, W.; Sen(t, C.; and Zain-

linger, R.: Distributed Fault-tolerant Real-time Systems: The Mars Approach. IEEE

Micro, vol. 9, Feb. 1989, pp. 25-40.

Moser, l,ouise; Melliar-Smith, Michael; and Schwartz, Richard: Design Verification of

SIFT. NASA Contractor Report 4097, Sept. 1987.

Peer Review of a Formal Vezrification/l)esign Proof Methodology. NASA Conference

Publication 2377, July 1983.

Lamport, Leslie; Shostak, RoberlJ; and Pease, Marshall: The Byzantine Generals Prob-

lem. ACM Transactions on Programming Languages and Systems, vol. 4, no. 3, July

1982, pp. 382-401.

Mancini, L. V.; and Pappalardo, G.: Towards a Theory of Replicated Processing. In

Lecture Notes in Computer Science, vol. 331, pp. 175-192. Springer Verlag, 1988.

Rushby, John: Formal Specification and Verification of a Fault-Masking and Transient.

Recovery Model for Digital Flight-Control Systems. NASA Contractor Report 4384, July
1991.

Rushby, John: Formal Specification and Verification of a Fault-Masking and Transient-

Recovery Model for Digital Flight-Control Systems. In Proceedings of the Symposium

on Formal Techniques in Real Time and Fault Tolerant Systems, Nijmegen, The Nether-

lands, Jan. 1992. To appear.

Shankar, Natarajan: Mechanical Verification of a Schematic Byzantine Clock Synchro-

nization Algorithm. NASA Contractor Report 4386, July 1991.

Shankar, Natarajan: Mechanical Verification of a Schematic Byzantine Fault-Tolerant

(',lock Synchronization Algorithm. In Proceedings of the Symposium on Formal Tech-

niques in Real Time and Fault Tolerant Systems, Nijmegen, The Netherlands, Jan. 1992.

qb appear.

57



[24]

[25]

[26]

[271

[281

Harel, D.; Lachover, It.; Naamad, A.; Pnueli, A.; Politi, M.; Sherman, R.; Shtull-

Trauring, A.; and Trakhtenbrot, M.: STATEMATE: A Working Environment for the

Development of Complex Reactive Systems. IEEE Transactions on Software Engineer-

ing, vol. 16, no. 4, Apr. 1990, pp. 403-414.

Clarke, E.M.; Emerson, E.A.; and Sistla, A.P.: Automatic Verification of Finite-State

Concurrent Systems using Temporal Logic Specifications. ACM Transactions on Pro-

gramming Languages and Systems, vol. 8, no. 2, Apr. 1986, pp. 244-263.

Miner, Paul S.; and Caldwell, James L.: A IlOL Theory for Voting. In NASA Formal

Methods Workshop 1990, NASA CP-10052, Nov. 1990, pp. 442-456.

Bevier, William R.; and Young, William D.:

Implementation of a Fault-Tolerant Circuit.

1990.

Machine Checked Proofs of the Design and

NASA Contractor Report 182099, Nov.

Bevier, William R.; and Young, William D.: The Proof of Correctness of a Fault-

Tolerant Circuit Design. In Second IFIP Conference on Dependable Computing For

Critical Applications, Tucson, Arizona, Feb. 1991, pp. 107-114.

[29] Hunt, Jr., Warren A.: Microprocessor Design Verification. Journal of Automated Rea-

soning, no. 4, 1989, pp. 429-260.

[3o]

[31]

[32]

[33]

[34]

[35]

[36]

Srivas, Mandayam; and Bickford, Mark: Verification of the FtCayuga Fault-Tolerant

itiicroprocessor System (Volume I: A Case Study in Theorem Prover-Based Verifica-

tion). NASA Contractor Report 4381, July 1991.

Pan, Jing; Levitt, Karl; and Cohen, Gerald C.: Toward a Formal Verification of a

Floating-Point Coprocessor and its Composition with a Central Processing Unit. NASA

Contractor Report 187547, 1991.

Pan, Jing; and Levitt, Karl: Towards a Formal Specification of the IEEE Floating-Point

Standard with Application to the Verification of Floating-Point Coprocessors. In 24th

Asilomar Conference on Signals, Syslems _ Computers, Monterrey, CA., Nov. 1990.

Kalvala, Sara; Levitt, Karl; and Cohen, Gerald C.: Design and Verification of a DMA

Processor. To be published as a NASA Contractor Report, 1991.

Windley, Phil J.; Levitt, Karl; and Cohen, Gerald C.: Formal Proof of the AVM-1

Microprocessor Using the Concept of Generic Interpreters. NASA Contractor Report

187491, Mar. 1991.

Windley, Phil J.; Levitt, Karl; and Cohen, Gerald C.: The Formal Verification of

Generic lnteTTreters. NASA Contractor Report 4403, Oct. 1991.

Windley, Phil J.: Abstract llardware. In ACM International Workshop on Formal

Methods in VLSI Design, Miami, FL, Jan. 1991.

58



[37]

[38]

[39]

[40]

[41]

[42]

Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Verification of a Set of

Memory Management Units. NASA Contractor Report 189566, 1992.

Schubert, Thomas; and Levitt, Karl: Verification of Memory Management Units. In

Second IFIP Conference on Dependable Compuling For Critical Applications, Tucson,

Arizona, Feb. 1991, pp. 115-123.

Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Towards Composition of Veri-

fied lIardware Devices. NASA Contractor Report 187504, 1991.

Pan, Jing; Levitt, Karl; and Schubert, E. Thomas: Toward a Formal Verification of

a Floating-Point Coprocessor and its Composition with a Central Processing Unit. In

ACM International Workshop on Formal Methods in VLSI Design, Miami, FL, Jan.

1991.

Kalvala, Sara; Archer, Myla; and Levitt, Karl: A Methodology for Integrating Hardware

Design and Verification. In A CM International Workshop on Formal Methods in VLSI

Design, Miami, FL, Jan. 1991.

Welch, J. I,undelius; and Lynch, Nancy A.: A New Fault-tolerant Algorithm For Clock

Synchronization. Information and Computation, vol. 77, no. 1, Apr. 1988, pp. 1-35.

59



Index

'File following imlcx identifies where each

symbol or identificr is intro(luced in tile

main body of the report. Multiple entries

appear for those names used in more than

one module in the EIIDM specifi(:ations.

c(t) 33
T 6 R f0 33

T(;)33

A0-_) 33

A(0 34
qP

34

6 34

_o 34

_.34

v 39

p 33

c(T) 33

fk 19

f, 15

f, 19

m 34

rt(0(T) 33

rip 33

A/'d. 38

A/'_ 40

:v£ 38
40

N'_;, 40

Ha, 26

Af,_., 27

A/'_ 27

28
._,[, 28
.,V,., 15

Af,,, 14

A0 34

Corr 33

DA 9

Dhmap 42

DAstate 36

DS 9

DSmap 29
DSstate 25

ELT 44

MB 13

MBvec 13

Pstate 13

RS 8

RSmap 22
RSstate 15

$I 34

SIA 35

52 34

Theorem_l 35

Theorem_2 35

US8

all_durations 39

allowable_faults 16

broadcast_duration 39

broadcast_du ration2 39

broadcast_received 27

broadcast_received 38

cell 18

cell_recovered 20

cell_recovery 23

cell_state 18

clock_advanced 39

com_broadcast_2 44

corn_broadcast_5 44

components_equal 20

consensus_prop 24
control_recovered 20

control_recovery 23
control_state 18

da_proc_state 36

da_proc_state 36
da_rt 36

da_rt_lem 37

dep 19

dep_agree 19

60



dep_recovery 20

ds_proc_array 25

ds_proc_state 25
duration 39

enough_clocks 35

enough_hardware 38
frame_N_ds 26

frame_commutes 22

frame_commutes 29

frame_time 33

full_recovery 20

good_clock 33

good_values_sent 16
matial_Corr 33

mltial_da 41

mltial_ds 28

mitial_maj_cond 24

initial_maps 22

initial_maps 29

initial_maps 42

initial_recovery 20
initial_rs 17

initial.us 14

inputs 13

maj 22

maj_ax 22

real_condition 16

maj_working 17

nonfaultybclock 33

nrep 13

num_good_clocks 35

outputs 13

phase_com_,l' 43

phase_commutes 42

phases 25

pos_durations 39

processors_exist_ax 13
reachable 22

rec 19

rec_maj_f_c 24

rs_proc_state 15

ss_update 29

ss_update 42

state_invariant 23

61

state_rec_inv 23

state_recovery 23
succ 19

succ_ax 19

sync_thm 36

sync_time 34

vote_maj 20
voted_final_state 16

working_majority 24

working_proc 17

working_set 17



Appendix A

LaTeX-printed Specification Listings

The following specifications were formatted with the assistance of tile EIIDM latex-printer.

us: Module

Using generic_FT

Exporting all

Theory

s, t: Vat Pstate

u: Var inputs

A/',,: Definition function[Pstate, Pstate, inputs -- bool] =

(_ s,$,u : | ----fc(u,'))

initial_us: hmction[Pstate --* bool] = ( )t s : s = initial_proc_state)

End

generic_FT: Module

Using rcp_defs, sets[processors],cardinality[processors]

Exporting all with rcp.defs, sets[processors], cardinality [processors]

Theory

us, ps, X, Y: Var Pstate

tJ, i, #: Var processors

k, I, q: Var nat

u: "Car inputs

w: Vat MBvec

h: Var MBmatrix

A, B: Var set[processors]

maj_conditlon: function[set[processors] -- heel] =

( _ A: 2 * card(A) > catd(fullset[processors]))

(* The folloeing definitions and axioms are used to model a general class

of fault-tolerant computation schemes. The elaboration of these

unlnterpreted functions, as well as thos_ in rcp_defs, would be made

for a particular choice of application-dependent computation style and

voting pattern. (]iven suitable choices, the axioms can then be shorn

to be theorems. *)

control_state: Type

cell: Type

cell_state: Type
c,d,¢: Vat cell

K: Var control_state

H: Vat nat

succ: function[control_state --* control_state]
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fk: function[Pstate --* control_state]

- ft: function[Pstate, cell --. cell_state]

fc: function[inputs, Pstate --* Pstate]

/a: function[Pstate--* outputs] (* actuator output *)

f,: function[Pstate _ MB]

f_: function[Pstate, MBvec --. Pstate]

(* rec(c,K,H) = Tiff cell c's state should have been recovered when in

control state g sith healthy count H; note that H-! healthy frames

will have occurred previously. *)

rec: function[cell, control_state, nat ---, bool]

(* dep(c,d,g) = Tiff cell c's value in the next state depends on cell d's
value in the current state, shen in control state g; if cell c is voted

during g, or its colputation takes only sensor inputs, there is no

dependency; if c is not coaputed during K, c depends only on itself;

othereise, c depends on one or core cells for its nee value. *)

dep: function[cell, cell, control_state -- bool]

dep_agree: function[cell, control_state, Pstate, Pstate --+ bool] =

( _c,K,X,Y : (V d : dep(c,d,K) 2) f,(X,d) = f_(Y,d)))

(* Lxiosn to be satisfied by the generic application *)

succ_ax: Axiom fh(/c(u, ps)) = succ(fk(ps))

full_recovery: Axiom H > recovery_period 2) rec(c, Ix', 11)

initial_recovery: Axiom rec(c, Ix', 11) 2> H > 2
=

dep_recovery: Axiom rec(c, succ(K), tl + 1) A dep(c, d, K) 2) rec(d, K, H)

components_equal: Axiom fl,(X) = fh(Y) ^ (Vc:/t(.V,c) = ft(Y, c)) 2) X = Y

control_recovered: Axiom

maj_condition(A) A (Vp: p E A D w(p) = f,(ps)) 2) fk(fv(Y, w)) =/_(ps)

cell_recovered: Axiom

maj_condition (A)

A (Vp: p e .,4 D w(p) = fs(fc(u,ps)))

A fk(X) = g A fl,(ps) = K A dep_agree(c,/(, X, ps)

]3/,(S,,(/<:(u, X), iv), c) --- ft(f<(u,ps), c)

vote_maj: Axiom maj_condition(k) A (Vp : p E A 2) w(p) = f,(ps))

2) A(ps, ,,) = ps

(* Lemaas pertaining to sets and cardinalities *)

card_fullset: Lenima card(fullset[processors]) > 0

proc_extensionality: Lemma (Vp : p E A = p E B) D (A = B)

Proof

disharge_finite: Prove

finite[proceg_ors] {f *-- ( _ p -- nat : p), N .-- nrep}

nat_nit: Sublemma k > 0 _ k _ 0
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p_nat_nit: Prove nat_nlt

p_card_fullset: Prove card_fullset from

empty {a *- fullset[processors]],

card_empty {a .- fullset[processors]},
nat_nit {k *- card(fuUset[processors])}

p_proc_extensionality: Prove proc_extensionality {p *-- x_pl} from

extensionality {a *-- A, b *-- B}

End

t_s: Module

Using genedc.FT

Exporting all with generic_FT

Theory

rs_proc_state: Type = Record healthy : nat,

proc_state : Pstate
end record

RSstate: Type = array [processors] of rs_proc_state
rs0: RSstate

rsproc0: rs_proc_state

s, t: Vat RSstate
u: Var inputs
w: Var MBvec

h: Var MBmatrix

p, q: Var processors
k: Var nat

A: Var set[processors]

working_proc: function[RSstate, processors --. bool] =

(A s, p : s(p).healthy >_.recovery_period)
working_set: function[RSstate --* set[processors]] =

( A s : ( A p : working_proc(s, p)))

maj_working: function[RSstate -* bool] =

( A t: maj_condltion (working_set(t)))

allowable_faults: function[RSstate, RSstate --* bool] =

( A s, t : maj_working(t)

A (Vp : t(p).healthy > 0 D t(p).healthy = 1 + s(p).healthy))

good_values_sent: function[RSstate, inputs, MBvec _ bool] =

( ),s,u,w : (V q :
s(q).healthy > 0 D w(q) = f,(f_(u, s(q).proc_state))))

votcd_final_.stv.te: function[RSstate, RSstate, inputs, MBmatrix, processors

-" bool] =

( A s, t, u, h, p: t(p).proc_state = f,,(f_(u, s(p).proc_state), h(p)))

.'V'rj : Definition function[RSstate, RSstate, inputs --_ booi] =
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( )_s,t,u : (3h :
(Up:

s(p).healthy > 0
D good_values_sent(s, u, h(p))

A voted_final_state(s, t, u, h, p)))

A allowable_faults(s, t))

initial_rs: function[RSstate --* bool] =

(,as: (Vp:
s(p).healthy = recovery_period

A s(p).proc_state = initial_proc_state))

Proof

End

P__to_US: Module

Using as, us, RS_majority

Exporting all with RS, US, RS_majority

Theory

rs, s, $, z, y, z: Vat RSstate

us, ps, X,Y: Vat Pstate

p, i, j: Var processors

k, i, q: Vat nat
u: Var inputs

w: Var MBvec

h: Var MBmatrix

MBmatrix0: MBmatrix

MBcons_fn: Type is function[processors ---, MBvec]

MBfn: Var MBcons_fn

RSstate_prop: Type is function[RSstate ---, bool]

rs_prop: Var RSstate_prop

RSmap: function[RSstate --* Pstate] = ( _Xrs : maj(rs))

rs_meuure: function[RSstate, nat --, nat] == (_ rs, k :k)

reachable_in.n: function[RSstate, nat --, bool] =

()_t,k: ifk=O
then initial_rs(t)

else ( 3 s, u : reachable_in_n(s, k - 1) A A/'_,(s, t, u))

end if) by rs_measure

reachable: function[RSstate _ bool] = ( ,X t : (3 k : reachable-inrn(t, k)))

frame_commutes: Theorem reachable(s) A N'_.(s, t, u) D Af.o(RSmap(s), RSmap(t), u)

initial,maps: Theorem initial_rs(s) D initial_us(RSmap(s))

End

RS_majority: Module

Using os, RS, nat_inductions

Exporting an

Theory

k: Var nat
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p: Vat processors
us: Vat Pstate

r$: Vat RSstate

A: Vat set[processors]

maj_exists: function[RSstate _ bool] -

(_.rs:(_A,es:
taxi_condition(A) A (V p: p E A D rs(p).proc_state = us)))

maj: function[RSstate --4 Pstate]

maj_ax: Axiom ( 3 A :

maj_condition(A) A (Vp : p E A D rs(p).proc_state = us))

3 maj(rs) = us

End

RS_lemmas: Module

Using RS_to_US

Exporting all with RS.to_US

Theory

rs, s, t, z, y, z: Var RSstate

us: Var Pstate

p,i,j: Vat processors
k, 1, q: Vat nat

u: Var inputs
to: Var MBvec

h: Vat- MBmatrix

MBmatrix0: M Bmatrix

MBcons_fn: Type Is function[processors --- MBvec]

MBfn: Vat MBcons_fn

RSstate_prop: Type is function[RSstate --* bool]
rs_prop: Vat RSstate.prop

m, n, a, b: Vat proc_plus

prop: Vat- function[proc_plus ---, bool]
e,d,e: Vat cell
]f: Vat control_state

H: Var nat

A: Vat set[processors]

initial_maj: Lcmma

initial_rs(s) 2) (V p: maj_exists(s) A s(p).proc_state = maj(s))

initial.working: Lemma initial_rs(s) _ working_set(s) -- fullset[processors]

initial_maj_cond: Lemma initial_rs(s) 2) maj_condition(working_set(s))

controLrecovery: function[RSstate --. bool] =

(_, s: (¥p: s(p).healthy > I 3 .fk(s(p).proc_state) = fh(maj(s))))

cell_recovery: function[RSstate _ bool] =

(_s:(Vp, c:
rec(c, fk(s(p).proc_state), s(p).heaJthy)

2) ft(s(p).proc_state, c) = ft(maj(s), c)))

state_recovery: function[RSstate _ bool] =

( A s : maj_exists(s) A control_recovery(s) A cell_recovery(s))

working_majority: function[RSstate -. heel] =

(,_ s: (Vp: p E working_set(s) 2) s(p).proc_state = maj(s)))

66



consensus_prop: Lemma state_recovery(s) _ working_majority(s)

working_set_headthy: Lemma working_set(s)(p) :3 s(p).healthy > 0

maj_sent: Lemma state_recovery(s) ^ good_values_sent(s, u, w)

3 (V p : p E working_set(s) D w(p) = f,(f_(n, maj(s))))

rec_maj_exists: Lemma
maj_working(s) ^ state_recovery(s) A A/r°(s, t, u) D toni_exists(t)

rec_maj_Lc: Lemma

maj_working(s) A state_recovery(s) A Afr°(s, t, u) D maj(t) = f_(u, maj(s))

End

RS_invariants: Module

Using RS_lemmas, nat_inductions

Exporting all with RSJemmas

Theory

rs, s, t, s,y, z: Var RSstate
us: Var Pstate

p, i, j: Var processors

k, !, q: Vat nat
u: Var inputs

w: Vat MBvec

h: Vat MBmatrix

RSstate_prop: Type is function[RSstate -* bool]

rs_prop: Vat RSstate_prop

m, n, a, b: Vat proc_plus

prop: Var function[proc_plus --_ bool]

c, d, e: Var cell

K: Vat control_state
tI: Vat nat

A: Vat- set[processors]

state_inv_iant: function[RSstate_prop -- bool] =

( _ rs_prop : (Vt: reachable(I) 2) rs_prop(t)))

state_induction: Lemma

(¥ z : initial_rs(z) 2) rs_prop(_))

A ( ¥ s, t, u : reachable(s) A rs_prop(s) A A/'ro(s, _, n) 2) rs_prop(t))

2) state_invariant(rs_prop)

maj_working_inv: Lemma state_invariaat(maj_worklng)

state_recAnv: Lemma state.invariant(state_recovery)

Proof

state_invariant_to_n: function[RSstate_prop, nat -- bool] =

(X rs_prop, k: (V t: reachable_in_n(t, k) 2) rs_prop(t)))

base_stateind: Lemma

(initi',d_rs(x) 2) rs_prop(z)) 2) (reachable_in_n(z, 0) 2)rs_prop(_))

ind_state_ind: Lemma

(V s, t, u : reachable(s) A rs_prop(s) A Afr,(s, t, u) 2) rs_prop(t))

(V k : state_invaxiant_to_n(rs_prop, k)

2) state_invariant_to_n(rs_prop, k + 1))
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p_base_stateind: Prove base_state_ind from
reachable_in_n {t .- x, k _-- 0}

p_ind_state_ind: Prove
ind_stateind {s _ s@p3, t .- tQp2, u _ uGp3} from

state.invariant_to-n {k *- k, t _ s_p3},

state_invariant-to-n {k .- k + 1. t _ t},

reachable_in_n {t *-- t, k .- k + 1},

reachable {t .-- sap3, k *-- k}

p_state_induction: Prove

state_induction

{z _-- tQp3,

s .- s@p4.

t _-- t_p4,

u _-- uQp4 } from
nat_induction

{p _ ( J_ k : state_invariant_to_n(rs-prop, k)),

n2 '- kQp7},

base_stateind {z _-- tQp3},

state_invariant_to-n {t .--- z, k .-- 0},

ind_state_ind {k *-- ntQpl},

state.invariant_to_n (t 4-- t_p6, k .- k@p7},

state_invariant,

reachable {t "- tCqp6}

maj_working_inv_ll: Lemma initlal_rs(s) D maj_working(s)

maj_worklng_invA2: Lemma Xr.(s, t, u) D maj-working(0

p_maj_working_inv_ll: Prove maj_working_inv_ll from

maj_working {t _ s}, inltlal_maj_cond

p_maj_working_inv_12: Prove maj_working_inv_12 from A/'r. , a]lowable_faults

p_maj_working_inv: Prove mxj_working_inv from

state_induction {rs_prop *-- m_j_working},

maj_working_inv_li {s .- x@pl},

maj_working_inv_12 {s *-- s@pl, t .- t@pl, u _-- u@pl}

statc_rec_inv_ll: Lemma initial_rs(s) D state_recovery(s)

state_recinv_12: Lemma

maj_worklng(s) A state_recovery(s) A Afr.(s, t, ,u) A maj(t) = fc(u, maj(s))
D control_recovery(t)

state_rec.inv_13: Lemma

maj_working(s) A state_recovery(s)

A maj(t) = fc('u,, maj(s))

A t(p).healthy = I + s(p).healthy

A fk(s(p).proc..state) = fk(maj(s))

A fk(t(p).proc_state) = fk(maj(t))

A good_values_sent(s, u, h(p))

A rec(c, fk (t(p). proc_state), t(p). healthy)

D ft(f_(fc(u, s(p).proc_state), h(p)), c) = ft(f_(u, maj(s)), c)

state_reclnv_14: Lemma

maj_working(s) A state_recovery(s)

A A/'..(s, t, u) A maj(t) = f_(u, maj(s)) A control-recovery(0

D cell_recovery(t)

state_recinv_15: Lemma
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reachable(s)A state_recovery(s) A N'_.(s, t, u) D state.recovery(t)

p_state_rec_iav_ll: Prove state_rec_inv_ll from
control_recovery,

ceil_recovery,

state_recovery,

initiaL maj (p *- p_pl},

initial_maj {p .- pQp2}

p_state_re¢.inv_12: Prove state_rec_inv_12 from

control_recovery {s *- t},

X,. (p _- pOpl},
control_recover_l

{ps *- f_(u, maj(s)),

A ,- working_set(s),

to .-- ((hop_)p_p_),
Y .- fc(u, (s(p_pl)).proc_state)},

maj.sent {p ,- pQp3, to _- ((h_p2)p@pl)},
maj_working {t *- s},

state_recovery,

control_recovery {p .- p_pl},

voted_finaLstate {h *- h@p2, p *- pC_pl },

Mlowable_faults {p *-- pQpl}

p_state_rec_inv_13: Prove state_rec_inv_13 from

dep_xgree {K ,-- fk(maj(s)), X .-- s(p).proc_state, Y .- taxi(s)},
cell_recovered

{p, .- maj(_).
to .- h(p),
X ,--- s(p).proc_state,

A .- working_set(s),

K "" /k(maj(s))},

maj.sent {p _- p@p2, w ,- h(p)},

maj.working {t ,--- s},

state_recovery,

cell_recovery {p _- p, c _-- dC_pl },

dep_recovery {d ,---dOpl, K .--fk(maj(s)), H ,--s(p).healthy},
s,,cc_ax {p_ ,- maj(s)}

p_state_rec..inv.14: Prove state_r__inv_14 from

ceil_recovery {s ,--- t},

_r, {p .- tool ),
state_recAnv.13 {p ,--- pQpl, h *- h_p2, e _- c6pl},

state_recovery,

control_recovery {p *- p_pl },

control_recovery {s .- t, p 4-- p_pl},

voted_final_state {h ,- hQp2, p _ p¢#pl},

allowable_faults {p _ p@pl },

initial_recovery

(c .-- cOpl,

H .- (t(pGpl))healthy,
If .-- f k ( ( t(pGpl )).proc_state ) } ,

succ_ax {ps .- maj(s)}

p_state.rec.inv_15: Prove state_rec_inv.15 from
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state_rec_inv_12,

rec_maj_exists,
rec.maj_f_c,

state_rec_invJ4,

state_recovery {s 4-- t},

maj.working_inv,

state_invariant {rs_prop _ maj_working, l 4- s}

p.state_rec_inv: Prove state_rec_inv from

state.induction {rs_prop 4---state_recovery},

state_rec_inv_ll {s *- xapl },

state_rec_inv_15 {s 4-- s_pl, t *---tf_pl, u +-- u_pl }

End

RS_top_proof: Module

Using RS_invariants

Exporting a]{

Theory

rs, s, f, x, y, z: Var RSstate

us: Var Pstate

p, i,j: Vat processors
k, l, q: Vat nat

u: Vat inputs
iv: 'Car MBvec
h: Vat MBmatrix

c, d, e: Var cell
/(: Vat controLstate

H: Var nat

A: Vat" set[processors]
MBmatrix0: MBmatrix

MBcons_fn: Type is function[processors --* MBvec]

MBfn: Var MBcons_fn

RSstate_prop: Type is function[RSstate --* bool]

rs_prop: Vat RSstate_prop

m, n, a, b: Var proc_plus

prop: Var function[proc_plus --* bool]

Proof

p_frame_commutes: Prove frame_commutes frollx

A/'u, { s _ maj(s), t ,--- maj(t)},

rec_maj_Lc,

consensus_ prop,

maj_working_inv,

state_invariant {rs_prop _ maj_working, t _ s},

state_rec_inv,

stateJnvariant {rs_prop ¢-- state_recovery, t ,--- s},

state_recovery,

RSmap {rs .--- s},

RSmap {rs .--- t}

p_initial_maps: Prove initial_maps from

maj_ax {A *-- working_set(s), rs _ s. us .-- initial_proc_statc},

inltial_us {s .-- RSmap(s)},

initial_rs {p ,--- p_pl},

RSmap {rs .-- s},
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i.itial.maj_cond

p_initial_working:Proveinitial_workingfrom
extensionality {a .- working_set(s), b .- fullset[processors]},

initial_rs {p .- zOpl},

working.set {p ,-- zOpl},

working_proc {p _ zQpl}

p_initial_maj_cond: Prove initial_maj_cond from
maj_condition {A .- working_set(s)}, initial_working, card_f.llset

p_initial_maj: Prove initial_maj from

maj_gx

T8 _ S I

A .- fullset[processors],

us .- initial_proc_state},

maj_exists

TS _-- S t

A *--"fullset[processors],

us ,-- initial_pro(:..state},

maj_condition {A *- fullset[processors]},

initial.rs [p ,-- p_pl},

initial_rs {p ,--- p_p2},
initial, rs,
card_fullset

p_working_set_healthy: Prove working_set_healthy from

working_set, working_proc, recovery_period_ax

p_consensus_prop: Prove consensus_prop from

working.majority,

components_equal {X ,- (s(p@pl)).proc_state, Y .- maj(s)},
control_recovery {p _-" pQpl),

cell_recovery {p .- pop1, c _ c@p2},

full_recovery

{c ,- cop2,

K ,- j',((s(pQpl)).proc_state),

H *-- (s(p@pl)).healthy },

st ate_recovery,
working_set {p *-- pQpl},

working_proc {p *- p_}pl},

recovery_period_ax

p_maj.sent: Prove maj..sent from

good_values_sent {q .- p},

consensus_prop,

working_majority,

working_set_healthy

p_rec_maj_exists: Prove rec_maj_exists from
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maj_exists {rs ,-- t, A .- working_set(a), us ,-/¢(u, maj(s))},

X_. {p .--vOvl },
vote_maj

{ps _ A(u, maj(s)),

w .- ((hop2)vOpl),
A .--- working_set(s)},

maj_sent {p _-- p_p3, w 4-- ((h_p2)p_pl)},

state_recovery,

consensus_prop,

working_majority {p _ pQpl},

voted_final_state {h *--- hop2, p *'- p_pl},

working_set_healthy {p *-- p_pl },

maj_working {t ,- s}

p_rec_maj-f_c: Prove rec_maj_f_c from
maj_ax {rs ,- t, A .-- working_set(a), us .-- fc(u, maj(s))},

_. {v .- pop1},
vote_maj

{ps '- f_(u, maj(s)),

w *-- ((h_p2)p_pl),
A _- working_set(s)},

maj_sent {p .-- p@p3, w _ ((h@p2)p@pl)},

st&t¢_recovery,

consensus_prop,
working_majority {p _- p_pl},

voted.final_state {h .-- hop2, p *- p_pl},

working_set_healthy {p *- pC_pl },

maj_working {t .- s}

End

RS_tcc_proof: Module

Using rcp_defs_tcc

Exporting all

Theory

Proof

proc_plus_TCCl_PROOF: Prove proc_plus_TCC1 {p _- 0}

processors_TCCl_PROOF: Prove processors_TCCl {p .- nrep} from

processors_exist_ax

End

RS_to_FS_tcc: Module

Using RS_to__S

Exporting all with RS_to_US

Theory

s: Var RS.RSstate

t: Var RS.RSstate

k: Var naturalnumber

re_hable_in_n_TCCl: Formula (-.(k = 0)) D (k - 1 _> 0)
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reachable_in_n_TCC2:Formula
(-,(1¢= 0)) _ rs_measure(t, k) > rs_measure(s, k - 1)

Proof

reachable_in_n_TCCl_PROOF: Prove reachable_in_n_TCC1

reachable_in_n_TCC2_PROOF: Prove reachable_in_n_TCC2

End RS_to_US_tcc

DS: Module

Using generic_FT

Exporting all with gencric_FT

Theory

ds_proc_state: Type = Record healthy : nat,
proc_state : Pstate,
mailbox : MBvec

end record

ds_proc_array: Type = array [processors] of ds_proc_state

DSstate: Type = Record phase : phases,
proc : ds_proc_array

end record

ds0: DSstate

dsproc0: ds_proc..state
s, t, z, y, z: Var DSstate

u: Var inputs
w: Var MBvec

i, j, p, q, qq: Var processors
k: Vat nat

ph: Var phases
A: Var set[processors]

working_proc: function[DSstate, processoFs -- bool] =

( _ s, p : s.proc(p).healthy _> recovery_period)

working_set: function[DSstate --* set[processors]] =

( _ s : ( _t p : working_proc(s, p)))

maj_working: function[DSstate -- bool] =

(A t : maj-condition (working-set(0))

allowable_faults: function[DSstate, DSstate -* bool] =

( A s, t : maj_working(t)
A (V i : t.proc(i).healthy > 0

3 t.proc(i).healthy = 1 + s.proc(i).healthy))

broadcast.received: function[DSstate, DSstate, processors --_ bool] =

(_s,t,p:(Vqq:
s.proc(qq).healthy > 0

D t.proc(p).mailbox(qq) = s.proc(qq).mailbox(qq)))

.A/'_,: function[DSstate, DSstate, inputs, processors -- bool] =

(_s,t,u,i:

s.proc(i).hcalthy > 0

3 t.proc(i).proc_state = f_(u, s.proc(i).proc_state)

A t.proc(i).mailbox (i) = fo(f_(u, s.proc(i).proc_tate)))
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A/b,: function[DSstate, DSstate, processors _ bool] =

( A s, t, i : s.proc(i).healthy > 0

D t.proc(i).proc_state = s.proc(i).proc_state

A broadcast_received (s, t, i))

A/_0: function[DSstate, DSstate, processors -. bool] =

( A s, t, i : s.proc(i).healthy > 0

D (t.proc(i).mailbox = s.proc(i).mailbox

A t.proc(i).proc_state

=/¢ (s.proc(i).proc_state, s.proc(i).mailbox)))

A/_°: function [DSstate, DSstate, processors -- boo|] =

( A s, t, i : s.proc(i).healthy > 0
l.proc(i).proc_state = s.proc(i).proc_state)

^ (t.proc(i).healthy > 0

t.proc(i).heaithy = ] + s.proc(i).healthy))

A/a, : function [DSstate, DSstate, inputs --* bool] =

( Ji s, t, n : maj_working(t)

A l.phase = next_phase(s.pha_e)

A(Vi:

if s.phase = sync

then A/So(s, t, i)

else t.proc(i).healthy --- s.proc(i).healthy

A (s.phase = compute D Af_0(s, _, u, i))

A (s.phase = broadcast D Afb°(s, t, i))

A (s.phase = vote D A/_o(s, t, i))

end if))

frame_N_ds: function[DSstate, DSstate, inputs -* bool] =

( A s,t,u : (3z, v,z :
A/d.(s,_, ,,) AA/,.(_, v, ,,) ^ A/,.(v, _, n) ^ A/,.(_, t, ,,)))

initial_ds: function[DSstate -- bool] =

( A s : s.phase -- compute

A ( V i : s.proc(i).healthy = recovery_period

^ s.proc(i).proc_state = initial_proc_state))

End

DS_to_RS: Module

Using r)s, RS

Exporting all with DS, RS

Theory

ds, s, t, x, V, z: Var DSstate
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rs:Var R.Sstate
i, j: Vat" processors

p: Var nat

u: Var inputs
w: Vat MBvec

h: Vat MFlmatrix

MBmatrix0: MBmatrix

MBcons_fn: Type is function[processors --* MBvec]

MBIn: Var MBcons_fn

ssu_meaaure: function[DSstate, nat --* nat] == (A ds, p : p)

ss_update: Recursive functiop[DSstate, nat --. RSstate] =

( ,Xds, p: if (p = 0) v (p > nrep)
then rso

else ss_update(ds, p - 1)

with [(p) :-- rsprocO

with [(healthy) := ds.proc(p).healthy,

(proc_state) := ds.proc(p).proc_state]]

end if) by ssu_measure

DSmap: function[DSstate _ RSstate] = (Ads : ss_update(ds, nrep))

MBmc_measure: function[MBcons_h, nat --* nat] == (A MBfn, p :p)

MBmatrix_cons: Recursive function[MBcons.h, nat --- M Bmatrix] =

(AMBfn,p: if(p=O) v(p>nrep)
then MBmatrixO

else M Bmatrix_cons(M B fn, p - 1)

with [(p) := MBfn(p)]

end if) by MBmc_measure

frame.commutes: Theorem

s.phase = compute A frame_N_ds(s, t, tt) DAfrs (DSmap(s), DSmap(t), u)

initial_maps: Theorem initial_ds(s) D initial_rs(DSmap(s))

good_values_sent: function[DSstate, inputs, MBvec -* bool] =

(,_s,u,w : (Vj :
s.proc(j).healthy > 0 D w(j) = L(f_(u, s.proc(j).proc.state))))

voted_final_state: function [DSstate, DSstate, inputs, MBmatrix, processors

--* bool] =

( A s, t,u,h,i :

t.proc(i).i,roc_state =/,,(fc(e, s.proc(i).proc_state), h(i)))

is_new_proc_state: function[DSstate, DSst;tte, inputs--* bool] =

(_s,t,u:(3h:

(¥i : s.proc( i).healthy > 0

D good_values_sent(s, u, h(i))

A voted_flnal_state(s, t, u, h, i))))

fr_com.l: Lemma s.phase --- compute A frame_N_ds(s, t, u)

D is_new_procJtate(s, t, u) A allowable_faults(s, t)

fr_com_2: Lemma is_new_proc_state(s, t, u) A allowable_faults(s, t)

D A/',, (DSmap(s), DSmap(t), u)

fc_A: Lemma s.phase = compute A frame_N_ds(s, t, u)

D is_new_proc_state(s, t, u)

fc_B: Lemma s.phase = compute A frame_N_ds(s, t, u) D allowable_faults(s, t)
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End

DSlemmas: Module

Using DS_to_RS

Exporting all with DS_to_RS

Theory

ds: Vat DSstxte

rs: Var RSstate

p, q: Var nat

ph: Var phases

s,t, z, y, z: Var DSstate

i, j, jj: Var processors

u: Var inputs
w: Vat MBvec

h: Vat MBmatrix

MBfn: Var MBcons_fn

MB: Vat MBvec

k, m, n, a, b: Var proc_plus

prop: Var function[proc_plus -* bool]

halLframe_N_ds: function[DSstate, DSstate, inputs -* bool] =

( _,_, t,,,: (3 y, _: .V.,.(_.,y, ,,) ^.,V'd,,(y, _,_,) ^.,V'd.(_, t,,,)))

quarter_frame_N-ds: function[DSstate, DSstate, inputs ---*bool] =

(_ u,t,,, : (3_: _V_.(y, z, u) A.Vd.(z, t, _)))

k_A_la: Lemma s.phs.se = compute A frame_N_ds(s, t, a)

_) (3z,y,z :

maj_working(z)

A(Vi:
x.phase = broadcast

^ x.proc(i).hexlthy = s.proc(i).healthy A A/'_,(s, z, it, i))

A J_fd,(X,V , U) A J_fds(y, Z, U) A J_fd,(Z,t, U))

fc_A_lb: Lemma s.phase = compute ^ frxme_N_ds(s, t, u)

D (3z, y,z:

maj_working(z)

A maj_working(y)

A(Vi:

z.phase = broa_lcast

A z.proc(i).hexlthy -- s.proc(i).healthy

A.,V'L(s, _,., i)
A y.phase = next_phase(z.phase)

A y.proc(1).healthy = z.proc(i).hea]thy
AXL(z,y,0)

A ]_fd°(y, g, t_) A ]_fd°(Z,t, U))

fc_A_lc: Lemma s.phase = compute A frame_N_ds(s, t, u)

76



_ (3z,l/,z :
maj_working(z)

A maj_working(It)

A(Vi:

z.phase = broadcast

A x.proc(i).healthy = s.proc(1).healthy

A s.proc(i).healthy > 0

2) x.proc(i).proc_state

= j'_(u, s.proc(i).proc_state))

A y.phase = vote

A y.proc(i).healthy = z.proc(i).healthy

^ (x.proc(i).he_lthy > 0
D y.proc(i).proe_state

= z.proc(i).proc.state

A(Vj:
_.proc(j).healthy > 0

2) y.proc(i).mailbox(j)

= f, (z.proc(j).proc.state)))))

A A/'a.(y,z,,_)A A/'d.(z,t,u))

fc_A_ld: Lemma s.phase -- compute A frame_N_ds(s, t, u)

_(3z, y,z:

maj_working(z)
A maj_working(y)

A (VjW :
:_.proc(jj),he_lthy -- s.proc(jj).healthy

A (s.proc(jj),hexlthy > 0

Z) y.proc(jj).proc_state = z.proc(jj).proc.state))

A(Vi:

y.phase : vote

A y.proc(i).healthy : s.proc(i).healthy

A s.proc(i).healthy > 0
D y.proc(i).proc..state

= f_(u, s.proc(i).proc..state)

A ('¢'j :

z.proc(j).healthy > 0

2) y.proc(i).mailbox (j)

= f,(z.proc(j), proc_state)))))

^.Vd.(y, z,_) ^ Xd.(z,*,,,))

fc_A_le: Lemma s.pha_e = compute ^ frame_N..ds(s, t, u)

2) (3z,y,z :

maj_working(z)
^ maj_working(y)

^(Vi:

y.phase = vote

^ y.proc(i).healthy = s.proc(i).healthy

^ s.proc(i).healthy > 0

2) y.proc(i).proc_state

= f_(u, s.proc(i).proc_sta, te)

A(Vj:
s.proc(j).healthy > 0

D y.proc(i).mafilbox(j)

= fo (y. proc(j).proc_state)))))

^ Xd.(_, _, ,,) ^ Jv'_.(--, t, _))
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fc_A_lf:Lemmas.pha_e ----compute A frame_N_ds(s, t, u)

2) (311, z :
maj_working(y)

^(Vi:
/.phase = vote

A y.proc(i).healthy = s.proc(/).he_thy

A s.proc(i).healthy > 0

2) y.proc(i).proc_state

= fc(u, s.proc(i).proc_state)

^(Vj:
s.proc(j).hcalthy > 0

2) y.proc(i).ma_lbox(j)

= L(y.proc(j).procJtate)))))

A _fd,(y, Z, u) A _[ds(Z,t, u) )

fc_A_2a: Lemma s.phase = compute A frxme_N_ds(s, t, u)

D(3y, z:

maj_worki ng(y)

^ maj_working(z)

A(Vi:

y.phase = vote

A y.proc(i).healthy = s.proc(i).hea]thy

A s.proc(i).healthy > 0
D y.proc(i).proc_state

= fc(U, s.proc(i).proc.stxte)

A(Vj:
s.proc(j).healthy > 0

2) y.proc(i).mailbox(j)

= fs(y.proc(j).proc_state))))

A z.phase = next_phase(y.phxse)

A z.proc(i).healthy = y.proc(i).healthy

A XL(_, z, i))
A.,%.(_,/,,,))

fc_A_2b: Lemma s.phase ffi compute A frame_N_ds(s, t, u)

2) (3U, z:

maj_working(y)

A maj_working(z)

A(Vi:

z.phase = next_phase(vote)

A z.proc(i).healthy = s.proc(i).heaJthy

A s.proc(i).heMthy > 0
2) y.proc( i).proc_state

= y_(u, s.proc(i).proc_state)

A(Vj:

s.proc(j).healthy > 0

3 y.proc(i).ma_lbox(j)

----f0 (y.proc(j).proc_st ate))))

^ s.proc(i).healthy > 0
2) (z.proc(i).mailbox = y.proc(i).mailbox

^ z.proc(1).proc_state

= f_(y.proc(i).proc_state,

y.proc(1).m ailbox))))

A._'_.(_, t, ,,))
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fc_A_2c: Lemma s.phase = compute ^ frame_N.ds(s, t, u)
i

_(3y, z:
maj_working(y)

A maj_wo:king(z)

A(Vi:
z.phase = next_phase(vote)

A z.proc(i).healthy = s.proc(i).he'41thy

A s.proc(i).healthy > 0

D y.proc(i).proc_state

= f_(u, s.proc(i).proc-state)

A z.proc(i).proc_state

= f_ (y.proc(i).proc_state,
z.proc(i).mailbox)

A(V#:
s.proc(j).healthy > 0

D z.ptoc(i).m_dlbox(j)

= f,(y.proc(j).proc_state))))

^ _.,.(:,_,-))

fc_A_2d: Lemma s.phue = compute A frame_N_ds(s, t, u)

D ( 3 z : maj_working(z)

A(Vi:
z.phase = sync

A z.proc(i).hea]thy -- s.proc(i).healthy

A s.proc(i).healthy > 0
D z.proc(i).proc_state

= f_ (fc(u, s.proc(i).proc-state),

z.proc(i).mailbox)

^(Vj:
s.proc(j).healthy > 0

D z.proc(i).maJlbox(j)

= f,(f_(u, s.proc(j).proc_stxte)))))

A .IV'd, (z, t, u))

fc_A_3x: Lemma s.phase = compute A frame_N.ds(s, t, u)

D ( 3 z : maj_working(()

A maj_working(z)

A(Vi:
z.phase ----sync

A z.proc(i).healthy = s.proc(i).heaJthy

A s.proc(/).healthy > 0
D z.proc(i).procJtate

= f_(fc(U, s.proc(i).proc_state),

z.proc(i).maJlbox)

A(Vj:
s.proc(j).healthy > 0

3 z.proc(i).mailbox(j)

= .f0(f¢(u, s.proc(j).proc_state))))

A t.phase = next_pha.se(z.phase) A A/',_,(z, t, i)))
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fc_A_35: Lemma s.phase = compute A frame_N_ds(s, t, u)

D ( 3 z : maj-working(0

^(Vi:

t.phase = next_phase(sync)

A z.ptoc(i).healthy ----s.proc(i).healthy

A s.proc(i).healthy > 0
D z.proc(i).proc-state

= f_(fc(u, s.proc(i).proc_state),

z.proc(i).mailbox)

A(V#:
s.proc(j).healthy > 0

z.proc( i).ma_lbox (j )
: fj(fc(u, s.proc(j).proc..state))))

A (z.proc(i).healthy > 0
D t.proc(i).proc_state ----z.proc(i).proc_state)

A (t.proc(i).healthy > 0
t.proc(i).healthy = 1 + z.proc(i).healthy)))

fc_A_3c: Lemma s.phase = compute A frame_N_ds(s, t, u)

( 3 z : maj_working(t)
A(Vi:

t.pha_e : compute

A s.proc(i).healthy > 0
Lproc(i).proc_state

= f, (f= (u, s.ptoc(i), proc..state),

z.proc(i).mailbox)

^(vj:
s.proc(j).healthy > 0

z.proc( i).mailbox(j)

= f,(f_(u, s.proc(j).proc_state))))

A (t.proc(i).healthy > 0
3 t.proc(i).healthy = 1 + s.proc(i).healthy)))

fc_A_3d: Lemma s.phase = compute ^ frame_N_ds(s, t, a)

maj_working(t)

A(3h:(Vi:

t.phase : compute

A (t.proc(i).healthy > 0
D t.proc(i).healthy = 1 + s.proc(i).healthy)

A s.proc(i).healthy > 0

t.proc( i).proc_state

= .f,(f=(u, s.proc(i).proc_state), h(i))

A(V#:
s.proc(j).healthy > 0

3 h(i)(j) = fo(f_(u, s.proc(j).proc_state))))))

map_l: Lemma (DSmap(s)(i)).healthy = s.proc(i).healthy

map_2: Lemma (DSmap(s)(i)).proc.state = s.proc(i).proc.state

map_3: Lemma allowable_f;ults(s, t) _ RS(.allowable_faultsDSmap(s), DSmap(t))

map_4: Lemma RS(.good_Values_sentDSmap(s), u, w) = good_values_sent(s, u, w)

map_5: Lemma RS(.voted_flnal_stateDSmap(s), DSmap(t), u, h, i)

= voted_final_state(s, t, tt, h, i)

map_7: Lemma RS(.maj_worki,gDSmap(s))= D,q(.maj_workiags)
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support_l: Lemma (V'i : s.proc(i).healthy = z.proc(i).hcalthy)

A allowable_ faults(z, y)

D adlowable_faults(s, y)

support_4: Lemma Af_,(s, t, u) :3 t.phase -- next_phase(s.phase)

support.5: Lemma s.phase -- ph A ph _ sync A.Nfdj(S,z,u)

D (V i: s.proc(i).healthy = z.proc(i).healthy)

support_6: Lemma s.phase = ph

A ph _ sync A .Afd,(s, z, u) A allowable_faults(z, y)

allowable_faults(s, y)

support_7: Lemma s.phase -computc ^ frame_N_ds(s, t, u)

( 3 z : )V'_0(s, z, u) ^ z.phase = broadcast ^ half_frame_N_ds(x, l, u))

support_8: Lemma z.phase = broadcast ^ half_framc_N.ds(z, t, u)

S) ( 3 y : .A/'d,(z, y, u) A y.phase = vote A quarter_frame_N_ds(y, t, u))

support_9: Lemma y.phase = vote ^ quarter_frame_N_ds(y, t, u)

D ( q z : .Afd0(y, z, u) A z.phase = syn¢ ^ .A/'do(Z, t, u))

support_ 10- Lemma s.pha_qe : sync ^.Afd°(S, t, u) _ allowablc_fa,lts(._, t)

support_l 1: Lemma

s.phase - compute A frame_N_ds(s, t, u) D allowable_faults(s, t)

support_]2: Lemma
s.phase = compute A frame_N_ds(s, t, u)

D ( 3 z : z.phase --- sync ^A/'d°(Z, t,u))

support_13: Lemnm MBmatrlx_cons(MBfn,nrep)(i) = MBfn(i)

st, pport_ 14: Lemma initial_ds(s) D working_set(s) = fuliset [processors]

support_IS: Lemma initial_ds(s) D maj_condition (working_set(s))

End

DS_top_proof: Module

Using DS_]emmas

Exporting all with DS/emmas

Theory

ds: Var DSstatc

rs: Var RSstate

p,q: Var nat

ph: Var phases

s,l,z,y,z: Var DSstate

i,j,ii,jj: Var processors

u: Var inputs
w: Var MBvec

h: Var MBmatrix

k, m, n, a, b: Var proc_plus

prop: Var function[proc_plus--* bool]

Proof

p_frame_commutcs: Prove frame_commutes from fr_com_l, fr_com_2
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p_initial_maps: Prove initial_maps from

initial_ds {i ,- pQp2},

initial_rs {s _-- DSmap(s)},
map.l {i _-- pQp2},

map_2 {i *---_p2}

p_fr_com_l: Prove fr_com_l from f(-_A, fc_B

p_fr_com_2: Prove fr_com_2 from

A/'r. {s .- DSmav(s), t ,- DSmap(t), h _ hq_l,2},

is_new_procostate {s .-- s, t .-- t, i _ p_pl},

map_3 {s ,- s, t ,- t},

map_4 {s .- s, w _ hQp2(p_pl)},

map_5 {s _-- s, l _-- t, h _-- h_p2. i _ p_pl},

map_l {s ,-- s, i .-- p_pl}

p_fc_A: Prove fc_A from

fc_A_3d {i .--i_p2, j .-j_p3},
is_new_proc_state {h .- h_pl },

DS_to_RS.good_values.se.t {w ,- h_pl (iC._p2)}.

DS_to.RS.voted_final.state {i .--- i_p2, h _- h_pl}

p_fc_B: Prove fc_B from support_ll

p_f¢.A_la: Prove fc_A_la {x ,--- z_pl. y _- y_pl, z _-- z_pl} from

frame_N_ds,

•N'a. {s _-- s_pl. t *-- x_pl},

next_phase {plt ,-- s.phase},

distinct_phases

p_fc_A_Ib: Prove fc_A_Ib {x _-- x_pl, y _- y_pl, z ,-- z_pl} from

fc.A_la, .M'd0 {s ,--- xQpl, t _ y_pl}, distinct_phases

p_fc..A.Ic: Prove fc_A_Ic {z ,--- z_pl, y 4- y_pl, z _-- z_pl} from

fc..A_lb,

t__A__b {i .- j},
distinct_phases,

next_phase {ph _ z.phase},

XL {t .-- _},
XL {t .-- r, i .- j},
._L {_'-_, t.- y},
broadcast_received {s ,-- x, t ,--- y, p .- i, qq *-- j}

p_fc_A_ld: Prove fc_A_id {x *-- x_}pl, y ,- yf_pl, z ,-- z@pl} from

fc_A_lc, k_A_lc {i .--jj}

p_fc_A_le: Prove fc_A_le {x _-- x_pl, y ,- y_pl. z _-- zt'@pl} from

fc_A_ld {jj .--- j}, fc_A_ld

p_fc..A_lf: Prove k_A_lf {y _-- y_}pl, z _-- z_pl} from fc_A_le

p_fc_A_2a: Prove fc_A_2a {y ,-- y_pl, z ,-- z_pl } from

fc_A_lf, A/d, {s ,--- y_pl, t .-- z_pl}, distinct_phases

p_fc_A_2b: Prove
fc_A.2a, .,V'L {_

p_fc_A_2c: Prove

p_fc_A_2d:

fc_A.2c,

fc_A_2b {y ,-- y(@pl, z _-- z(qpl } from

,---y, t.--z, i.--i@C}

fc_A_2c {y .--- yt_pl, z .- z_pl} from f(:_A_2b

Prove h:.A_2d {z .- zgtpl} from

next_phase {ph .-- vote}, distinct_phases, fc_A_2c {i .-- j}

82



p_fc_A_3a:Provefc_A_3a(z _ z_pl} from

fc_A_2d, Afj0 i s .-- zQpl, t .-- t@pl}, distinct_phases

p_[c_A_3b: Prove fc.A.3b {z ,-- z_pl} from

fc..A_3a, X_, {s _'- z, i *- iQC}

p_fc_A_3c: Prove fc_A_3c {z *--zQpl} from

fc_A_3b, next_phase {ph ,---sync}, distinct_pha._s

p_fc_A_3d: Prove fc_A_3d

{h .- MBmatrlx_cons(( A i: z_pl.proc(i).mailbox), nrcp)} from
fc_A_3c

{j,--j_c,
i *-- i_c,

U *'-- U_C,

t *--tQc,

s.--s_c},
support_13 (M B fn *-- (A i : z_pl.proc(i).mailbox), i ,-- i}

End

DS_map_proof: Module

Using DSlcmmas, nat_inductions

Exporting all with DS_lemmas

Theory

ds: Vat DSstate
rs: Var RSstate

p, qq: Var nat

ph: Var phases

s, t, z, y, z: Vat DSstate

i, j: Var processors

u: Var inputs
w: Var MBvec

h: Var MBmatrix

k, m, n, a, b: Var proc_plus

prop: Var function[proc_plus --_ bool]

Proof

mil_prop: function[DSstate, processors -. function[proc_plus --* bool]] =

(Ads,i: (Ak :

ss_update(ds, k)(i).healthy

= if i <_ k then ds.proc(i).healthy else rs0(i).hcalthy end if))

ndl_base: Lemma roll_prop(s, i)(0)

mll_ind: Lemma k < nrep ^ ndl_prop(s, i)(k) D ndl_prop(s,i)(k + 1)

p_mll_base: Prove roll_base from

mll_prop {ds .- s, i 4--" i, k ,-- 0},
ss_update {ds ,-- s, p *- 0}

p_mll_ind: Prove mlllnd from

roll_prop (ds .-- s, i *'- i, k *-- k},

roll_prop

{as .-- s,
i .-- i,

k .- if k = nrep then nrep else k + 1 end if},

ss_update {ds .-- s, p *- k + I}
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p_map_l: Prove map_l from

DSmap {ds 4- s},

proce_ors_induction {prop .- mll_prop(s,i), n 4- nrep},
roll_prop {da ,--- a, i _ i, k *-- nrep},

mll_base {s 4- s, i 4- i},

mll.ind {s *-- s, i *--- i, k *-- m_P2}

ml2.prop: function[DSstate, processors --* function[proc_plus --. heel]] =

(Ads, i:(_k:

ss_update(ds, k)(i).proc2tate

= ifi<_k

then ds.proc( i).proc_st_te

else rso( i).proc_state

end if))

nd2_base: Lemma ml2_prop(s, i)(0)

ml2_ind: Lemma k < nrep A ml2_prop(s, i)(k) D ml2_prop(s, i)(k + l)

p_ml2_base: Prove mi2_base from

ml2_prop {ds *-- s, i *- i, k *-- 0},

ss_update {ds .- s, p _-- 0}

p_ml21nd: Prove ml2_ind from

ml2_prop {ds _ s, i _ i, k .- k},

ml2_prop

{ds 4- s,
i*--i,

k 4- if k = nrep then nrep else k + 1 end if},

ss_update {ds _-- s, p 4- k + 1 }

p_map_2: Prove map_2 from

DSmap {ds .- s},

processors_induction {prop *-- mi2_prop(s, i). n 4- nrep},

ml2_prop {ds *-- s, i 4- i. k *-- nrep},

ml2_ba_e {s 4- s, i .-- i},

nd2.ind {s ,- s, i ,-- i, k .- me)P2}

p.map_3: Prove map_3 from

RS.aUowable_faults {s ,--- DSmap(s), t 4- DSmap(t)},

DS.allowable_faults {s .- s, t ,--- t, i .- p_pl},

map_7 {s .-- t},

map_l {s *---a, i .- pOpl},

map_l {s ,--- t, i .--- pQpt}

p_map_4: Prove map_4 from

RS.good_values_sent {s 4- DSmap(s), q ,--- j@P2},

DS_to_RS.good_vaiues_sent {j 0-- q@PIS},

map_l {i 4- jQp2},

map_2 {i *- jOp2},

map_l {i 4- qOP1},

map_2 {i *- q_Pl }

p_map_5: Prove map_5 from

RS.votecl_fins.l_state {s 4- DSmap(s), t ,- DSmap(t), p ,--- i},

DS_to_ RS.voted_fi n',d_state,

|nap_l {i 4- i},

map_l {s _ t, i _ i},

map.2 {i _ i},

map_2 {s .-- t, i *- i}
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p_map.7: Prove map_7 from
proc.extensionallty

{A *-- RS(.workingJetDSmap(s)),

B _ DS(.working_sets)},

RS.maj_working {t 4- DSmap(s)},

ItS.working_set {s *-- DSmap(s), p 4- p@pl},

RS.working_proc {s 4- DSmap(s), p _-- p@pl},

DS.maj_working {t .-- s},

DS.working_set {s *- s, p 4- p_pl},

DS.workingoproc {s 4- s, p 4-- p_pl},

map.l {i *-- p_pl}

End

DS_support_proof: Module

Using DS/emmas, nat_inductions

Exporting all wlth DS_lemmas

Theory

ds: Var DSstate

rs: Vat- RSstate

p, q: Vat nat

ph: Vat phases

s, t, z, y, z: Vat DSstate

i, j: Vat processors

u: Vat inputs
w: Var MBvec

h: Var MBmatrix

MBfn: Vat MBcons_fn

k, m, n, a, b- Var proc.p]us

prop: Var function[proc_plus _ bool]

Proof

p_support_l: Prove support_l {i ,-- i_p2} from

DS.allowable_faults {s 4- x, t _ y, i *-- i_tp2},

DS.aUowable_faults {s 4- s, t _-- y}

p_support_4: Prove support_4 from Afd_

p_support_5: Prove support_5 from

member_phases {phases_var ,-- ph },

Afd. {s,--s, t,---_, u4-., i.-i}

p_support_6: Prove support_6 from support_l, support_5 {i _ i_pl }

p_support_7: Prove support_7 {z _- z_pl} from

frame_N.ds,

half_frame_Nods {z *-- z@pl, y *-- y_pl, z _-- z@pl},

support_4 {s 4- s, t *- zQpl, u 4- u},

next_phase {ph _ compute}

p_support.8: Prove support_8 {y 4- y@pl} from
half_frame_N_ds,

quarter_frame_N_ds {y *-- y@pl, z 4- zt_pl},

support_4 {s ,-- z, t ,- y@pl, u 4- u},

next_phase {ph _ broadcast },

distinct_phases
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p.support_9: Prove support_9 {z _-- z@pl} from

quarter.fraxne_N_ds,

support_4 (s .--- y, t ,--- zQpl, u 4-- u},

next_phase (ph .-- vote},
distinct_phases

p_support_10: Prove support_! 0 from

DS.allowable_fauits, A/d, {i ,-- i(_pl }, A/',_, {i ,-- i_-)pl }

p_support_ll: Prove support_l I from

support_6 {s *-- s, z _-- zQp4, y *-- t, ph .- compute},

support_6 {s _ z@p4, • _ V@p5, y ,- t, ph *-- broaden.st},

support_6 {s ,- It@p5, z *-- zQp6, y .-- f, ph .- vote},

support_7,

support_8 {¢ ,-- z_p4},

support_9 {y ,-- V@p5},

support_10 {s ,-- z@p6},

distinct_phases

p.support_12: Prove support_12 (z ,- z@p3} from
support_7, support_8 {z .-- z_pl}, support_0 {y .-- y@p2}

sl13_prop: function[MBcons_fn, processors -- function[proc_plus _ bool]] =

(AMBfn, i:(Ak:

MBmatrix_cons( M B f n, k )( i)

= if i < k then MBfn(i) else MBmatrix0(i) end if))

sll3_base: Lemma sll3.prop(MBfn,i)(O)

sl13_ind: Lemma m < nrep A sl13_prop(MBfn, i)(m)

sll3_prop(MBfn, i)(m + 1)

p_sll3_base: Prove sll3.base from

sll3_prop {k .- 0, i .-- i}, MBmatrix_cons {p _ 0}

p_sll3_ind: Prove sll3_ind from

sll3_prop {k 4--- m, i _-- i},

sll3_prop {i ,--- i, k *-- if m = nrep then nrep else m + 1 end if},

MBmatrix_cons {p *-- m + 1 }

p_support_13: Prove support_13 from

processors_induction {prop .--sll3_prop(MBfn, i), n .--nrep},

sl13_prop {k ,-- nrep, i *-- i},

sll3_base {i .-- i}.

sll3_ind {i ,-- i, m .- mCCpl}

p_support_14: Prove support_14 from

proc_extensionality {A .--- working_set(s), B ,--- fuliset[processors]},

initial_ds {i ,--- pQpl},

DS.working_set {p _ p{_pl},

DS.working_proc {p ,- p@pl }

p.support_15: Prove support_15 from

maj_condition {A .-working_set(s)}, support_14, card_fuliset

End

DS_to_ltS.tcc: Module

Using DS_to_RS

Exporting all with DS.to_RS
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Theory

ds: Var DS.DSstate

p: Vat nxturalnumber
M B fn: Var function[rcp_defs.processors -* rcp_defs.MBvec]

ss_update_TCCl: Formula (-,((p = 0) v (p > nrep))) D (p - 1 >_ 0)

ss_update_TCC2: Formula (-_((p = 0) V (p > nrep))) D ((p > 0) A (7' __ nrep))

ss_update_TCC3: Formula

(-,((p = 0) v (p > nrep))) D ssu_measure(ds, p) > ssu_mc_ure(ds, p - 1)

MBmatrix_cons.TCCl: Formula

(-((p = o) v (p > nrev)))
D MBmc_measure(MBfn, p) > MBmc_measurc(MBfn, p - 1)

Proof

ss_update_TCCl_PROOF: Prove ss_update_TCCl

ss_update_TCC2_PROOF: Prove ss_update_TCC2

ss_update_TCC3_PROOF: Prove ss_update_TCC3

MBmatrix_cons.TCCl_PROOF: Prove MBmatrix_cons_TCCl

End l)S_to_RS_tcc

DS.su pport_proof_tcc: Module

Using DS_support_proof

Exporting all with DS.support_proof

Theory

p: Vat rcp_defs.processors

m: Var rcp_defs.proc_phs
z: Vat DS.DSstate

y: Vat DS.DSstate
x: Vat DS.DSstate

i: Vat rcp_de[s.processors

p_s113_base_TCCl: Formula ((0 > 0)A (0 _< nrep))
p_sll 3_ind_TCC1: Formula

(( ifm = nrep then nrep else m + I end if> 0)
A ( if m = nrep then nrep else m + l end if_< nrep))

p_support_13_TCCl: Formula ((nrep > 0) ^ (nrep _< nrep))

Proof

p_sll3_base_TCCl_PROOF: Prove p_sll3_base_TCC1

p_slI3_ind_TCCI_PROOF: Prove p_sll3_ind_TCCl

p.support_13_TCCl_PROOF: Prove p-qupport_13.TCCl

End DS_support_proof_tcc

DS_map_prooLtcc: Module

Using DS_map_proof

Exporting all with DS_map_proof
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Theory

k: Vat rcp_defs.proc_plus

q: Vat rcp_defs.processors
j: Var rcp_defs.processors

p: Vat rcp_defs.processors

m: Var rcp_defs.proc_plus

p_mll_base_TCCl: Formula ((0 > 0) A (0 < nrep))

p_mll_ind_TCCl: Formula

(( if k = nrep then nrep else, k + 1 end if> 0)

A ( if k = nrep then nrep else k + I end if< nrep))

p_map_l_TCCl: Formula ((nrep > 0)A (nrep _< nrep))

Proof

p.mll_basc_TCCl_PROOF: Prove p_mll_basc_TCCl

p_mlI_Ind_TCCI_PROOF: Prove p_mll_ind_TCCl

p_map.l_TCC 1_PRO0 F: Prove p_map_ 1_TCC 1

End DS_map_prooLtcc

DA: Module

Using clkmod, generic_FT

Exporting all with clkmod, generic_FT

Theory

max_comm_delay: realtime (* max broadcast delivery time *)

da_proc.state: Type -- Record healthy : nat,
proc.state : Pstate,

mailbox : MBvc_c,

lclock : Iogical_clocktime,

cure_delta : number (, = ¢orr; added to logical

end record to obtain physical *)

da..proc_array: Type = array [processors] of da_proc_state

DAstate: Type = Record phase :phases,
sync_period : nat, (, = idealized frame count *)

proc : da_proc_array

end record

s, t, x, y, z, da: Vat DAstate

u: Vat inputs
w: Var MBvec

i, j, p, q, qq: Vat processors

k: Var nat

ph: Var phases

ps: Vat da_proc_state

T: Var logical_clocktime

A: Var set[processors]

,-, (_.sync_period)
Corr_implementation: Lemma s.proc(p).cum_delta = _:orrp "
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working_proc: function[DAstate, processors ---, bool] =

(_, s,p: s.proc(p).healthy >_ recovery_period)

working_set: function[DAstate ---* set[processors]] --

(_ s: (,_ p: working_proc(s, p)))

maj_working: function[DAstate -. bool] =

()* t: maj_condition (working_set(t)))

enough_hardware: function[DAstate -, bool] =

( ,_ t : maj_working(t) A enough_clocks(t.sync_period))

da_rt: function[DAstate, processors, logical_clocktime _ realtime] =

( _ da, p, T : cp(T + da.proc(p).cum_delta))
unknown: fraction

u: fraction = unknown (* variability of processor run rates *)

X, Y: Vat logical_clocktime
D: Vat number

clock_advanced: function[Iogical_clocktime,logical_clocktime, number

--_ bool] =

(_X,Y,D:X+D*(I-u)_<YAY<X+D,(I+u))

duration: function[phases --* logical_clocktime]

broadcast_duration: Axiom

(1 - Rho) • ]duration(broadcast) - 2 * v * duration(compute) - v, duration(broadcast)] - 6

_> max_comm_delay

broadcast_duration2: Axiom

duration(broadcast) - 2 * v * duration(compute) - v * duration(broadcast) _> 0
all_durations: Axiom

(1 + u) * duration(compute) + (1 + I,). duration(broadcast) _< frame_time

pos_durations: Axiom

0 _< (1 - v) • duration(compute)

^ 0 _< (1 - v) * duration(broadcast)

^ 0 _< (1 - u) * duration(vote) ^ 0 _< (1 - v) • duration(sync)

broadcast_received: fimction[DAstate, DAstate, processors --* hool] --

( _s,t,p : (Vqq :

s.proc(qq).healthy > 0

A da_rt(s, qq, s.proc(qq).lclock) + max_corn re_delay

_< da_rt(t, p, t.proc(p).iclock)

t.proc(p).mailbox (qq) = s.proc(qq),mailbox (qq)))

Af_a : function[DAstate, DAstate, inputs, processors --_ bool] =

(As, t,u,i:

s.proc(1).healthy > 0

:) t.proc(i).proc.state = f_(u, s.proc(i).proc_state)

A l.proc(i).mailbox(i) = fo(f_(u, s.proc(i).proc_state)))

Af_: function[DAstate, DAstate, processors-, bool] =

(), s, t, i : s.proc(i).healthy > 0

2) t.proc(i).proc_state = s.proc(i).proc_state

A broadcast_received (s, t, i))
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A/'_a: function[DAstate, DAstate, processors -. bool] --

( _ s, t, i : s.proc(i).hedthy > 0

D t.proc(i).mailbox = s.proc(i).matlbox

A t.proc(i).proc.state

----f_( s.proc( i).proc_state, s.proc(i).mailbox))

Afro: function [DAstate, DAstate, processors --. bool] =

(), s, t, i : s.proc(0.heMthy > 0

D t.proc(i).proc_state = s.proc(i).proc_state)

A (t.proc(i).healthy > 0

D t.proc(i).healthy = I + s.proc(i).he_thy

^ nonfaulty_clock(i, t.sync_period))

^ t.sync_period = I -{- s.sync_pcriod

^ (nonfaulty_clock(i, s.sync_period)

t.proc(i),|clock = (1 Jr s.sync_period) • frame_time

^ t.proc(i).cum_delta

= s.proc(i).cum_delta + A_ssync-peri°d)))

A/d°: function[DAstate, DAstate, inputs --_ bool] =

( A s, t, U : enough_hardware(t)

A t.phase = next_phase(s.phase)
^(Vi:

if s.phase = sync

then A/_°(,, t, i)

else t.proc(i).healthy = s.proc(i).heaithy

^ t.proc(i).cum_delta = s.proc(i).cum_delta

A t.sync_period = s.sync_period

^ (nonfaulty_ciock(i, s.sync_period )

clock_advanced(s.proc(i).|c]ock,

t.proc(i).Iclock,

duration (s.phase)))
A (s.phase = compute D A/,_, (s, t, u, i))

A (s.phase = broadcast D A/'_,(s, l, i))

A (s.phase = vote D Alamo(s, t, i))

end if))

initial_da: function[DAst_te ---. bool] =
( )t s :s.phase = compute

^ s.sync_period = 0

^(Vi:

s.proc(i).healthy = recovery_period

A s,proc(i),proc_state = initial_l_roc_state

^ s.proc(i).cum_delta = 0

^ s.proc(i).lclock = 0 ^ nonfaulty_clock (i, 0)))

End

DA_to_DS: Module

Using DA, DS

Exporting all with DA, DS

Theory
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da, s, t, z, y, z: Var DAstate
ds: Vat DSstate

p, i,j: Vat processors

k, l: Var nat
u: Vat" inputs
w: Vat MBvec

h: Vat MBmatrix

ph: Vat phases
MBmatrix0: MBmatrix
MBcons_fn: Type is function[processors -_ MBvec]

MBfn: Var MBcons_fn

7", Tt , 712, B B: Var logical_clocktime
DAstate_prop: Type is function[DAstate _ bool]

da_prop: Vat DAstate_prop
da_measure: function[DAstate, nat --* nat] ---- (A da, k: k)

ss_update: Reeursive function[DAstate, nat -. DSstate] =

(Ada, k: if(k=O) V(k>nrep)
then dso

else ss_update(da, k - 1)

with [(proc)(k) := dsproc0

with [(healthy) := da.proc(k).healthy,

(proc_state) := da.proc(k).proc_statc,
(mailbox) := da.proc(k).maJlbox]]

end if) by da_measure

DAmap: function[DAstate---, DSstate] =

( A da : ss_update(da, nrep) wlth [(phase) := da.phase])

MBmc_measure: function[MBcons_fn,nat --. naq == (A MBfn, k : k)

MBmatrix_cons: Reeurslve function[MBcons-h, nat -. MBmatrix] =

(AMBfn, k: if(k=O) V(k>nrep)
theu M BmatrixO

else MBmatrix.cons( M B fn, k - 1)

with [(k):= MBfn(k)]

end if) by MBmc_measure

reachable_in_n: function[DAstate, nat --- bool] =

(At, k: ifk=O

then initial_da(t)

else ( 3 s, a : reachable_in_n(s, k - 1) ^ A/'a.(s, t, u))

end if) by de_measure
reachable: function[l)Astate --. bool] = (A t : (] k : reachal,le_in_n(t, k)))

phase.commutes: Theorem reachable(s) A Afda(s, t, u) 2) Afd.(DAmap(s), DAmap(t), u)

initial_maps: Theorem initial_da(s) 2) initial_ds(DAmap(s))

End

1)A_invariants: Module

Using DA_to_DS, nat_inductions, DAlemmas

Exporting all with DA_to_DS

Theory
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da, 8, t, z, V, z: Var DAstate
ds: Vat DSstate

p, i, j: Var processors

k, I: Var nat

u: Var inputs
to: Var MBvec

h: Vat MBmatrix

ph: Var phases

cdv: Vat number

ii: Var period

T, T1, T2, B B: Var logical_clocktime

DAstate_prop: Type is function[DAstate -. bool]

da_prop: Var DAstate_prop
state_invariant: function[DAstate_prop _ bool] =

( A da_prop : (¥ t : reachable(t) D d__prop(t)))

state_induction: Lemma

(V :r : initiaLda(z) 2) dLprop(z))
A ( V s, t, u : reachable(s) A da_prop(s) A At'd_(s, t, u) D da._prop(l))

D state_invariant (da.-prop)

enough_inv: Lemma state_invariant((), s : enough_hardware(s)))

nLclks: function[DAstate--- bool] --

(_,s: (Vi:
s.proc(i).he',dthy > 0 D non faulty_clock(i, s.sync_period)))

nklk_inv: Lemma state_invaria, t(( A s : nf_clks(s)))

lclock.eq: function[DAstate-- bool] =

(,Xs : (Vi, i :
non faulty_clock(i, s.sync_period)

A nonfaulty_clock(j, s.sync_period) A s.phase = compute

D s.proc(i).lclock = s.proc(j).lclock))

lclock_inv: Lemma state..invariant((A s : lclock_eq(s)))

lclock_val: function[DAstate ---. booi] =

(_s:(Vi:
non faulty_clock(i, s.sync_period) A s.phase = compute

D s.proc(i).lclock = s.sync_period * frame_time))

clkval_inv: Lemma state_invariant(( A s : ldock_val(s)))

rtll: Lemma reachable(da) A non faulty_clock(p, da.sync_period)
(a_ sync_period)

da.proc(p).cum_delta = uorrv

da_rt/em: Lemma reachable(da) A non faulty_clock(p, da.sync_period)

3 da_rt(da, p, T) -- rt(pdasyne-peri°d )(T)

cum_delta_val: function[DAstate -_ bool] =

(_s:(Vp:
non faul ty_dock (p, s.sync_period )

D s.proc(p).cum-delta = Corr_ "'sync-peri°d- )))

.-, (ii) = Corr(p.-m) + A(pred(ii))Corrlem: Lemnm ii > 0 D c.orrj_

cdil: Lemma .M'a,_(s, l, u) A s.proc(p).cum_ddta = cd'e
A(pred(ii))

D t.proc(p).cum.delta = cdt, + -v

cum_delta_inv: Lemma stat__inwriant(( A s : cum_delta_v;d(s)))
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Proof

state_invariant_to_n: function[DAstate_prop, nat _ bool] =

( _ da_prop, k : (V t : reachable_in_n(t, k) D da_prop(t)))

base_state_ind: Lemma

(initial_da(z) 2) da_prop(z)) _ (reac.hable_in_n(z, 0) 3 da_prop(z))

ind_state_ind: Lemma

( V s, t, u: reachable(s) A da_prop(s) A Afao(s, t, u) 2) da_prop(t))

D ( Y k : state_invariant_to_n(da-prop, k)

2) state_invariant_to_n(da_prop, k + 1))

p_base_state_ind: Prove base_state_ind from
reachable_in_n {t .-- z, k .-- 0}

p_ind_state_ind: Prove
ind_stateJnd {s .-- sQp3, t _ t_p2, u *-- uf@p3} from

stateJnvariant_to_n {k _-- k, t _-- s@p3},

statejnvariant_to_n {k ,-- k + I, t *-- l},

reachable_in_n {t .-- t. k .-- k + 1},

reachable {t ,-- s_p3. k *- k}

p_stateJnduction: Prove
state_induction

{z *- t_p3,

s ,-- s@p4,

t .-- t@p4,

a ,-- u_p4} from
nat_induction

{p .- ( _Xk : state_invariant_to_n(da_prop, k)),

n2 _- k_pT},

base_stateJnd {z .-- top3},

stateJnvariant_to_n {t _ z, k .-- 0},

ind_state_ind {k *-- nl@pl},

stateJnvariant_to_n {t .-- t@p6, k *-- k_p7),

state._invariant,

reachable (t .- t_p6}

enough_inv_ll: Lemma initial_da(s) 2) enough_hardware(s)

enough_inv_12: Lemma Afd_(s, t, u) A enough_hardware(s) 2) enough_hardware(l)

p_enough_inv_ll: Prove enough_inv_ll from

enough_hardware {t .-- s],

enough_clocks {i .- s.sync_period },

DA.maj_working {t .- s),

support_14,

support_15,

processors_exist_ax

p_enough_inv_12: Prove enough_inv_12 from Afd_

p_enough_inv: Prove enough_inv from ..........

state_induction {da_prop .- (), s: enough_hardware(s))},

enough_inv_ll {s .-- zQpl},

enough_inv_12 {s .- s@pl, l *- t_pl, u _-- u@pl}

nfclk_inv_ll: Lemma initial_da(s) 2) nLclks(s)

nklk_inv_12: Lemma Afd.(S, t, u) ^ nf_ciks(s) 2) nf_clks(t)
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p_nfclk_inv_ll: Prove nfdk.inv_ll from nf_clks, initial_da {i *-- i@pl}

p_nfclkinv_12: Prove nfclk_inv_12 from

.A/do {i ,--- iOp3}, nf_clks {i *-- i_p3}, nf_clks {s -- t}, JV_,tsa{i *-- iOp3}

p_nfclkJnv: Prove nfclk_inv from

state_induction {da..prop ,-- (,_ s : nf_clks(s))},

nfclk_inv_ll {s _ z_pl},

nfclk_inv_12 {s ,- sg}pl, t ,-- t_pl, u ,-- u_pl}

Iclock_inv_ll: Lemma initial_da(s) D Iclock_cq(s)

Iclock_inv_12: Lemma .M'aa(s, t, u) A s.phase = sync D Iclock_eq(t)

lclock.iuv.12b: Lemma

Afda(s, t, u) _) (s.phase = sync _ t.phase = compute)

A (s.phase = compute D t.phase = broadcast)

A (s.phase = broadcast. _3/.phase = vote)

^ (s.phase = vote D t.phase = sync)

p_lclock_inv_12b: Prove iclock_inv_12b from

J_a,,

distlnct_phases,

next_phase {ph *-- compute_,

next_phase {ph ,--- vote},
next_phase {ph .-- broadcast},

next_phase {ph ,-- sync}

lclock_inv.12c: Lemma A/'d_(S, t, u) A s.phase # sync D t.phase # compute

p_lclock_inv_12c: Prove lclock_inv_12c from
]c]ock_inv_12b,

distinct.phases,
member_phases {phases_vat _-- t.phase},

member_phases {phases.var ,-- s.phase}

lclock.inv_13: Lemma

.lV'aa(s, t, u) A s.phase :_ sync D t.sync_period = s.sync_period

Iclock.inv_14: Lemma

Ai'a.(s, t, u) A s.phase # sync A Iclock_eq(s) D Iclock_eq(t)

p_ldock.inv_ll: Prove lclock_inv.I1 from

lclock_eq, initlal_da {i ,--- i_pl}, initial_da {i .---j_pl}

p_lclock_inv_12: Prove Iclock_inv_12 from

lclock_eq {s ,-- t},

A/a,, {i .-- i_pl},

A/_o(i .-- j_pl },
A/,_4 {i ,--- i_pl},

nfc_lem {p .- i_pl, i .-- s.sync_period},

nk_lem {p .- j_pl, i *-- s.sync_period}

p.lclock_inv_13: Prove Iclock_inv_13 from A/a_ {i .-- i}, Iclock_inv_12b

p_lclock_inv_14: Prove lclock_iav_14 from

Iclock_eq {s ,-- l},

[c|ock_cq {i ,-- i@pl, j ,-- j_l,l},

lclock_inv_12c,

distinct_ph ases,
Iclock_inv_13
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p_Iclock_inv:ProveIclock_invfrom
state.induction (da_prop 4- ( X s: lclock_eq(s))},

Iclock_inv.ll{s .---zQpl},

lcIock_inv_12 {s _-- s@pl, t _-- tQpl, u _-- uQpl),
iclock_inv_14 {s ,-- s@pl, f _-- tQp], u ,- u@pl}

clkval_inv_ll: Lemma initial_da(s) D lclock_val(s)

clkval_inv_12: Lemma reachable(s) ^ Afd_(s, t, u) D k-k,ck_val(/)

p_clkval_inv_ll: Prove clkval_inv_ll
from lclock_val, initial_da {i .- i_pl }

p_cikval_inv_12: Prove clkval_inv_12 from

Iclock_val {s *-- t},

x.. {i .- i_p_},
:v'_. {i .- i_p] },
support.16 {ph ,- s.phase},

prey_phase {ph .- t.phase},

nfc_lem {p 4-- i_pl, i 4-- s.sync_period}

p_clkval_inv: Prove clkvaLinv from
state_induction {da_prop _ ( ,_ s : lclock_val(s))),

clkval_inv_ll {s *-- zQpl},

clkval_inv_12 {s _- s_pl, t .- t_pl, a _- uQpl}

p_rtll: Prove rtll from

cum_delta_inv,

state_invariant {da_prop .- ( A s: cum_delta_val(s)), t .- da},

cum_delta_vxl {s _- da}

p_da_rt.lem: Prove da_rt_lem from

da.rt {p .- p}, rt(_2)(*3) {i ,-- da,sync_period, p .- p}, rtll

cum_delta_inv_ll: Lemma initial_dx(s) D cum_delta_val(s)

p_cum_deita_inv_ll: Prove cum.delta_inv_ll from
:, (*_)

initial_da {i .- p_p2}, cum_delta_val, _..orr.l {p _- p_p2, i _-- 0}

cum_delta-inv_12: Lemma

A/'d.(S, t, u) A s.phase = sync A c,.m_delta_val(s) 2) cum_dclta_val(t)

pt,ps: Vat period

cdi_12a: Lemma pt = ps + 1 D Corrg pt) = Corr(_ p_) + Ag p_)

p_cdi/2a: Prove cdi_l'2a from Corr(**_"_) {i ,--- pt, p .- p}

p_cum_delta_inv_12: Prove cum_deita_inv_12 from .........

cum_delta_val {s .- s, p .- pOOp2},

cum_delta_val {s _- t},

:v'_ {i .- pop2},
A/',_a {i ,-- p_p2},

cdi_12a {p _-- p_p2, pt *- Lsync_period, ps _-- s.sync_period },

arc/era {p ,-- p_p2, i _-- s.sync_period}

cum_delta_inv_14: Lemma

Afdo(s, t, u) A s.phase _ sync A cum_delta_vai(s) D cum_delt_vM(t)
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p_cum.delta_inv_14:Provecum_delta_inv_i4from
cum_delta_val{s_ t},

cum_delta_va] {p _-- pQpl },

distinct_phases

p_cum_delta_inv: Prove cum_delta_inv from
state_induction {tin_prop ,-- (), s : cum_delta_vaJ(s))},

cum_delta_inv_ll {s _ xQpl},

¢um_de|ta_inv_12 {s .-- sOpl, t .-- tGpl, u .-- u_pl},

cum_delta_inv_14 {s *--- sQpl, t .-- t@pl, u _ u_pl}
End

DA_lemmas: Module

Using DA_to_DS, clkprop

Exporting all with DA_to_DS, clkprop

Theory

ds: Var DSstate
da: Vat DAst_te

k: Var nat

ph: Var phases

s, t, x, F, z: Var DAstate

ss, tt: Var DSstate
p, q, i, j: Vat processors

u: Var inputs
w: Var MBvec

h: Var MBmatrix

MBfn: Var MBcons_fn

m, n, a, b: Vat proc_plus

prop: Var function_proc.plus --* boo[]

T, Tl , T2 , B B , bb: Ver logical_clocktime

DAstate_prop: Type is function[DAstate ---- bool]

da_prop: Vnr DAstate_prop

phase_corn_compute: Leman

s.phase --- compute A Afd_(s, t, u) D Afds(DAmap(s), DAmap(t), u)

hidel : function[DAstate, DAstate, inputs _ bool] --

( ._ s, t, u : (enough_hardware(t)

A t.phase = next_phase(s.phase)

A t.sync_period = s.._ync_l_erlod

A(¥i:
l.proc( i).health.v = s.proc( i).hea|t|ty

A t.proc(i).cum_delta = s.proc(i).cum_delta

^ t.sync_period = s.sync_period

A (nonfaulty_clock(i, s.sync_period)

clock_advanced( s.proc( i).lclock,

t.proc( i).lclock,

duration(s.phase)))

^Af_(s,t,u,i))))

phase_com_lxl : Lemma s.phase = compute A Afd_(S, t, u) _ hidel (s, t, u)
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phase_corn_Ix2: Lemma

s.phase = compute

A (maj_working(DA map(t))

A(Vi:
DAmap(t).phase = next_phase(DAmap(s).phase)

A DAmap(t).proc(i).healthy = DAmap(s).proc(i).healthy

A .A/',_o(DAmap(s), DAmap(t), u, i)))

3 A/'d,(DAmap(s), DAmap(t), u)

phase_corn.Ix4: Lemma

s.phase = compute

A (maj_working(DAmap(t))

A(Vi:

t.phase = next_phase(s.phase)

A t.proc(i).he_thy = _.proc(i).he_lthy A _(_, t, u, i)))
Afa, (I)Amap(s), DAmap(t), u)

phase_corn_Ix7: Lemma

s.phase = compute A .Afd,_(s, t, u)

D (maj_working(DAmap(t))

A(Vi:

t.phase = next_phase(s.phase)

A t.proc(i).hea]thy = s.proe(i).healthy A Af_(s, t, u, i)))

phase_corn_broadcast: Lemma

reachable(s) A s.phase = broadcast A Afda(s, t, u) D A/'d,(DAmap(s), DAmap(t), u)

corn_broadcast_ 1 : Lemma

s.phase = broadcast A .Afdo(S, t, u) _ ( V i: Afb,(s, t, i))

corn_broadcast_2: Lemma

s.phase = broadcast

A reachable(s)

A s.proc(i).healthy = t.proc(i).heaithy

A_,o(,,t,u) AXL(_, t,i)
D -Afbo(DAmap(s), DAmap(t), i)

corn_broadcast_3: Lemma

ss.phase -- broadcast

A tt.phase = next_phase(ss.phase)

A (V i : .Afb,(ss, tt, i) A tt.proc(i).healthy = SS.l_roc(i).healthy)

A DS.maj_working(/t)

D A/'., (ss,tt, u)

corn_broadcast_4: Lemma

s.phase = broadcast A A/,_(s,t,u)

D!DAmap(t).phase = next_phase(DAmap(s).phase)

A DAmap(t).proc(i).healthy = DAmap(s).proc(i).healthy

A DS.maj_working(DA map(t))

co|n_broadcast_5: Lemma

reachable(s) A Af, o (s, t, u)

A s.phase = broadcast

A s.proc(i).healthy > 0 A broadcast_received(s, t, i)

2) broadcast_ recei red (DA map (s), DA map (t), 0

phase_corn_vote: Lemma

s.phase = w, te A Afar(s, t, u) :3 Afa°(DAmap(s), DAmap(/), u)

com_vote_l : Lemma s.phase = vote A Afa,,(s, t, u) 3 (Vi: A_,_',(s, t, i))
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com_vote_2: Lemma Af2,(s, t, i) D Af_o(DAmap(s), DAmap(t), i)

com_vote.3: Lemma

ss.phase = vote ^ tt.phase -- next_phase(ss.phase)

A (V i : Al'_,(ss, tt, i) ^ tt.proc(i).healthy = ss.proc(i).healthy)

A DS.maj_working(tt)

Xd.(ss, t t, u)

com_vote_4: Lemma

s.phase = vote ^ A/'_(s, t, ,)

DAmap(t).phase = next_phase(DAmap(s).pha.'_)

A DAmap(t).proc(i).healthy = DAmap(s).proc(i).hcalt|,y

A DS.maj_worldng(DA map(I))

phase_com_sync: gemma
s.pha.se = sync A Afda(s, t, u) D Afds(DAmap(s), DAmap(t), u)

com.sync_l: Lemma s.phase = sync ^ Aft(s, t, ,) D (V i : A/_,(s, t, i))

com_sync_2: Lemma .N'2a(s, t, i) D Af2°(DAmap(s), DAmap(t), i)

com..aync_3: Lemma
ss.phase = sync A tt.phase = next_phase(ss.phase)

^ ( V i : Jq';o(SS, tt, i) ^ DS.maj_working(tt))

A_d,(_, tt, .)

com_sync_4: Lemma
s.phase = sync A_[da(s,t,u)

D DAmap(t).phase = next_pl, a_(DAnlap(s).phase) A DS.maj_working(DAmap(t))

earliest_later_tlme: Lemma

T2=T, +BB^(T_ >T o)
^ (BB > T °)

A nonfaulty_clock(i, da.sync_period)

^ non faulty_clock(j, da.sync_period)

^ enough _docks (da.sync.perlod)

AT2 E R (d"'sync-peri°d) ^ 7"1 E R(d_'sync-peri°d)

D rt_d"'sync-peri°d)(T_)

__ rt_d_sync-peri°d)(Tl) + (1 - Rho) * IBBI -

ELT: Lemma Ta >_ 7"1 + bb

^(T1 _TO)

A (bb __ TO)

A non faulty_clock(p, da.sync_period)

^ no.faulty_clock(q, da.sync_period)

A enough_clocks (da.sync.period)

^ T2 E R (d_sync-peri°d) ^ 7"1 G R (d_'sync-peri°d)
.(,l,.sync_ period),,_

D rip _2j

._(d, sync_period)/.z, x Ibbl - 6_> -.q t_11 +(1 - Rho)*

elt_a: Lemma (bb _ T °) A BB > bb D (1 - Rrho) , IDIJl>_ (_ - re,o), Ibbl

map_l: Lemma DAmap(s).proc(i).hcalthy = s.proc(i).healtl,y

map_2: Lemma DAmap(s).proc(i).proc_state = s.proc(i).proc_gtate

map_3: Lemma DAmap(s).pha.sc = s.pha._e

map_4: Lemma DAmap(s).proc(1).mailbox = s.proc(i).m;dlbox

map_7: Lemma I)S(.maj_workingl)Amap(s)) = DA(.maj_workings)
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support_l: Lemma initial_da(s) D working_set(s) = fullset[proce.._sors]

support.g: Lemma s.phase = ph A Afda(S, z, u) D z.phase =next_phase(ph)

support_5: Lemma s.phase = ph A ph _ sync A Afda(S, z, a)

(V i : s.proc(i).healthy --- r.proc(i).healthy)

support_13: Lemma MBmatrix_cons(MBfn, nrep)(i)= M Bf.(i)

support_14: Lemma initial_da(s) _ maj_condition (worki,tg_set(s))

support_15: Lemma initial_da(s) _ num_good_clocks(s.sync_period, nrep) = nrep

support_16: Lemma prev_phase(next_phase(ph)) = ph

End

DA_top_proof:Module

Using DA_lemmas, DA_invariants

Exporting all with DA_lemmas

Theory

ds: Vat" DSstate

da: Var DAstate

k: "Car nat

ph: Vat phases

s, t, z, y, z: Var DAstate

ss, tt: Var DSstate

p, q, i, j: Var processors

.: Var inputs

w: Var MBvec

h: "Car MBmatrix

MBfn: Var MBcons_fn

m, n, a, b: Var proc_plus

prop: Var function[proc_plus -_ bool]

T, X, Y: Vat logical.clocktime

Proof

p_phase_commutes: Prove phase_commutes from

phase_corn_corn pu te,
phase_com_broadcast,

phase_com_vote,

phase_com-syilc

member_phases {phases_var _-- s.phase}

p_initial_maps: Prove initial_maps from
initial_da {i .-- i@p2},

initial_ds {s ,-- DAmap(s)},

map_l {i _ i_p2},

map_2 {i _ i_p2},

map_3

p_phase_com_comp.te: Prove pha.,m_com_compute from
phase_corn_Ix4, phase_corn_Ix7 {i .- i@pl }

p_phase_com_lxl: Prove pl,ase_com_lxl from

Af,_ {i .- iffOp3}, distinct_pha-qes, hidcl
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p_phase_com_lx2:Provephase_corn.Ix2{i .--- i_pl } from
A/'d. {s .- DAmap(s), t *- DAmap(t)], distinct_phases, map_3

p_phase_com_Ix4: Prove phase_comlx4 {i _ i_pl} from

phase_corn_Ix2,

A/',_,{s _--DAmap(s), t _ DAmap(t)},

N'_o {s .- sac, t .-- tQc},
map_l,

map_2,

map_3,

map_4,

map_l {s ,---t},

lnap_2 {s .-- 1},

map_3 {s ,-- t},

map_4 {s ,-- t}

p.phase_com_lx7: Prove phase_corn_Ix7 from

phase_com_lxl, map_7 {s _-- t}, hidel, enough_hardware

p.phase_com_broadcast: Prove phase_com_broadcast from

com_broadcast_] {i .- iGp3},

corn_broadcast_2 {i .-- iQp3},

corn_broadcast_3 {ss .- DAmap(s), tt ,- DAmap(t)},

corn_broadcast_4 {i ,-- iap3},

map.l {s _-- s, i _ iGp2},

map_l {s _--t, i .-- /Qp2},

m_p__ {}

p_com_broadcast_l: Prove com_broadcast_l from

A/do , next_phase {ph .- broaxlcast}, distinct_phases

p_com_broadcast_2: Prove com_broadca.qt_2 from

corn_broadcast_5,

.Aft. {s *--DAmap(s), t*.- DAmap(t)},

map.l {s _--s},

map_l {s .- t},

map_2 {s _ s},

map.2 {s ,--t}

p_com.broaxicast_3: Prove com_broadca.st_3 {i *- i@_pl ) from

A/'a, {s .- ss, t ,-- tt}, distinct_phases

p_com_broaxlcast_4: Prove corn_broadcast_4 from

•_da 1

map.1 {s .--- s},

map_I {s ,-- t},

map_3 {s _-- s},

map.3 {s .-- t},

map_7 {s _-- t},

distinct_phases,

enough_hardware

p_earliest_later_tlme: Prove earliest_later_time from

GOAL {p _ i, q .-- j, i _ da.sync_period}
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p_elt_a: Prove elt_a from

I* 11 {z ,-- bb},

l* I[ {z .--BB},

*I × ,2 {y --- (I - Rho), x .-- Ibbl},
.! × .2 {U _- (1 - Rho), • .-- IBBI},
mult_]eq {z _-- (1 -- Rho), z ,-- IBBI, y *-- [bbt}

p_ELT: Prove ELT from

earliest_later_time {BB *-- T2 - "F,, i .-- p, j _ q@C},

elt_a {BB ,--T2 - TI},

*1 × .2 {x .- (l - Rho), It *-- Ibbl}

p_phase_corn_vote: Prove phase_corn_vote from

corn_vote_l {i .- i_p3},

com_vote_2 {i _ i_p3},

com_vote_3 {ss .-- DAmap(s), tt .-- DAmap(t)},

corn_vote_4 {i .-- i_p3},

map_3 {}

p_corn_vote_l:Prove com_vote_I from A/da ,distinct_phases

p_corn_vote_2:Prove corn_vote_2from

A/,_.{s .- DAmap(s), t *--DAmap(t)},

A/io,
map_l {s 4-- s},

map_l {s _ t},

map_2 {s .-- s},

map_2 {s .-- t},

map_4 {s .- s},

map_4 {s .-- t}

p_com_vote_3: Prove corn_vote_3 {i _ i@pl} from

A/e, {s .-- ss, t .-- tt}, distinct_phases

p_corn_vote_4: Prove corn_vote_4 froln

A/aa ,

enough_hardware,

map.l {s .--- s},

map_l {s _ t},

map_3 {s _-- s},

map_3 {s .-- t},

map_7 {s .-- t},

distinct_phases

p_phase_com_sync: Prove phase_com_sync from

com.aync_l {i .-- i_p3},

com_sync_2 {i .-- i_p3},

com_ync_3 {ss _-- DAmap(s), It _- l)Amap(t)},

com_sync_4 {},

map_3 {}

p_com_sync_l: Prove com_sync_l from A/_

p_com_sync_2: Prove com_sync_2 from

A/I, {s .-- DAmap(s), t *-- DAmap(/)},

map_l {s .- s},

map_l {s .-- t},

map.2 {s .-- s}.

map_2 {s .- t}
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p_com_sync_3: Prove com_sync_3 {i ,-- iQpl} from Afd, {s 4-- ss, I ,-.- it}

p_com_sync_4: Prove com_sync_4 from

End

l)A_map_proof: Module

Using DA_lemma.s, nat_inductions

Exporting all with DA_lemmas

Theory

ds: Var DSstate

da: Var DAstate

k,q: Vat nat

ph: Var ph&scs

s, t, x, y, z: Var DAstate

p, i, j: Vat processors
u: Var inputs
w: Var MBvec

h: Var MBmatrix

MBfn: Var MBcons_fn

m, n, a, b: Var proc_plus
prop: Var function[proc_plus _ bool]

Proof

roll_prop: function[DAstate, processors --_ function[proc_plus --* bool]] =

(Ada, i : (Aa :

ss_update(da, a).proc(i).l_ealthy

= lfi<_a

then da.proc(i).healthy
else dso.proc( i).heaithy

end if))

rail_base: Lemma mil_prop(s, i)(O)

mil_ind: Lemma a < nrep ^ mll_prop(s, i)(a) D roll_prop(s, i)(a + 1)

p_mll_base: Prove roll_base from

roll_prop {da 4-- s, i _ i, a _ 0},

ss_update {da *-- s, k *'- O}

p_mll_ind: Prove mll_ind from

mll_prop {da .- s, i *-- i, a ,--- a).

mlt_prop

{da ,-- s,
i_i,

a ,-- if a = nrep then nrep else a + 1 end if},

ss_updatc {da _ s, k _- a + 1}

p_map_l: Prove map_l from

DAmap {da ,-- s},

processors_induction {prop _ mll_prop(s,i), n _ nrcp},

roll_prop {da _ s, i ,-- i, a _ nrep},

mi I_base {s *-- s, i *- i},

n,ll_ind {s *-- s, i ,-- i, a ,- mg_P2}
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ml2_prop: function[l)Astate, processors -* function[proc_plus --, bool]] =

(_da, i : (ha :

ss_update(da, a).proc(i).proc_state

= lfi<_a

then da.proc(i).proc_state

else dso,proc( i).proc_statc

end if))

ml2.base: Lemma ml2_prop(s,i)(0)

ml2_ind: Lemma a < nrep A ml2_prop(s, i)(a) D ml2_prop(s, i)(a + 1)

p_ml2_base: Prove ml2_base front

ml2_prop {da .- s, i .-- i, a *-- 0},

ss_update {da *- s, k +-- O}

p_ml2_ind: Prove ml2ind from

ml2_prop {da *-- s, i ,-- i, a _ a},

rnl2_prop

{da .-- s,
i.--i,

a *-- ifa = nrep then nrep else a+ 1 end if},

ss_.pdate {da *-- s, k *-- a + 1}

p_map_2: Prove map_2 from

DAmap {da *-- s},

processors_induction {prop *-- ml2_prop(s, i), n ,-- nrep},

ml2_prop {da .-- s, i ,--- i, a *-- nrep},

ml2_base {s _ s, i *- i},

ml2_ind {s _ s, i .-- i, a _ mftP2}

p_map_3: Prove ,nap_3 from DAmap {da *-- s}

ml4_prop: function[I)Astate, processors --. function[proc_plus --. bool]] =

( Jkda, i :(),a :

ss_update(da, a ).proc( i).maJlbox

= ifi<_a

then da.proc(i).mailbox

else dso.proc( i).mailbox

end if))

ml4_base: Lemma ml4_prop(s, i)(0)

ml4_ind: Lemma a < nrep ^ ml4_prop(s, i)(a) D ml4_prop(s, i)(a + 1)

p_ml4_base: Prove ml4_base from

ml4_prop {da *-- s, i *- i, a *-- 0},

ss_update {da .- s, k _-- O}

p_ml4_ind: Prove ml4il,d from

ml4_prop {da .- s, i *-- i, a _-- a},

ml4_prop

{da _- s,

i*--i,

a _ if a = nrep then nrep else a + l end if},

ss_update {da *-- s, k ,-- a + 1}
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p_map_4: Prove map_4 from

DAmap {da .- .},

processors_induction {prop ..- ml4_prop(s, i), n .- nrep},

ml4_prop {da .- s, i *- i, a *- nrep},
ml4_baae {s _-- s, i *-- i},

rnl4_ind [s _-- s, i _ i, a _ mCJP2}

p_map_7: Prove map_7 from

proc_extensionality

{A .-- DS(.working_setDAmap(s)),

B ,-- DA(.working_sets)},

DS.maj_working {t *-- DAmap(s)},

DS.working_set {s _-- DAmap(s), p .--- pOpl },

DS.working_proc {s ,--- DAmap(s), p .--- p_pl },

DA.maj_working {t _-- s},

DA.working_qet {s *- s, p *-- p<_pl },

DA.working_proc {s .- s, p *- p_pl},

map_l {i ,- p_pl}

End

DA_support_proof: Module

Using DAJemmas, nat_inductions, DA_invariants

Exporting all with DA/emma._

Theory

ds: Var DSstate

da: Vat DAstate

k, q: Vat nat

ph: Var phases

s, t, x, y, z: Var DAstate

p, i, j: Vat processors

u: Vat inputs

w: Var MBvec

h: Var MBmatrix

MBfn: Vat" MBcons_fn

m, n, a, b: Vat proc_plus

prop: Var function[proc_plus -. bool]

Proof

p_support_l: Prove support_l from

proc_extensionality {A .- working_set(s), 13 ,-- full_t[l,rocessors]},

initial_da {i .- p@pl},

DA.working_set {p *- pap1},

DA.working_proc {p *- p@pl }

p_support_4: Prove support_4 from A/'da {s *-- s, t .-- z}

p_support_5: Prove support_5 from

member_phases {phases_vat ,-- ph},

Xd, {s_--s, t.--r,, u*--u, i.--i}

sll3_prop: function[MBcons_fn, processors ---. function[proc_plus -. bool]] =

(A MBfn, i:(Aa:

MBmatrix_cons(M B f n, a )( i)

= if i _< a then MBf.(i) else MBmatrix0(i) end if))

sll 3_base: Lemma sll 3_prop(M �l/n, i)(O)
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slla_ind: Lemma a < nrep ^ sll3_prop(MBfn, i)(a) D sll3_prop(MBfn, i)(a + 1)

p_sll3_base: Prove sll3_base from

sll3_prop Ca ,-- o, i .-- i}, MBmatrix_cons {k .-- 0}

p_sll3_ind: Prove sil3_ind from

sll3_prop {a ,--- a, i _-- i},

sil3_prop {i _ i, a 4- if a = nrep then nrep else a + l end if},

MBmatrix_cons {k _ a + 1 }

p_support_13: Prove support_13 from

processors_induction Cprop _- sil3_prop(MBfn, i), n *-- nrcp},
sll3_prop Ca ,-- nrep, i _-- i},

sll3_base Ci _-- i},

sl13_ind { i _ i, a _ rnOpl}

p_support_14: Prove support_14 from

maj_condition {A ,-- working_set(s)}, support_i, card_fullset

sl 15_prop: function [l)Ast_te _ function [n at ---, bool]] =

(,_s: (,_q:
initial_da(s)

D num_good_clocks(s.sync_period, q)

= if q < nrep then q else 0 end if))

sll5_base: Lemma sllS_prop(s)(0)

sllS_ind: Lemma sllS_prop(s)(q) S) sllS.prop(s)(q + 1)

p_sll5_base: Prove sllS_base from

sllS_prop {s _ s, q .-- 0},

hum_good_clocks {i *-- s.sync_perlod, k _-- 0}

p_sll5_ind: Prove sllS_ind from

sllS_prop {s *-- s, q _-- q},

sll5_prop {s ,--- s, q _ q + 1},

num_good_clocks {i ,-- s.sync_period, k ,--- q + 1},

initial_da {s ,--- s, i ,--- if q < nrep then q + 1 else nrep end if}

p_support_15: Prove support_IS from

nat_induction {p _-- sllS_prop(s), n2 .-- nrep},

sllS_prop Cs .-- s, q _-- nrep},
sll5_base {s _ s},

sllS_ind {s _-- s, q ,--- nlQpl}

p_support_16: Prove support_16 from
next_phase,

prev_phase {ph _-- next_phase(ph ) },
distinct_phases,

member_phases {phases_vax _ ph}

End

DA_broadcast_prf: Module

Using DA_lernmas, DA_invariants

Exporting all with DA_lemmas

Theory
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ds: Var DSstate
da: Vat DAstate

k: Var nat

ph: Var phases

r, s, t, z: Var DAstate

ss, tt: Var DSstate

p, q, pp, qq: Vat processors

u, u_, u2: Vat inputs
w: Vat MBvec

h: Var MBmatrix

MBfu: Vat MBcons_fn

rn, n, a, b: gal" proc_plus

prop: Var fu nction [proc_plus --* bool]

T, X, Y, TI ,T2, f/B: Vat IoglcM_clocktime

6b, zx, yy, zz: Var clocktime

Tp, Sq, Rq, Rp, Epsi: Var clocktime

int5: Lemma r.phase = compute

A reachable(r)

A Afdo (r, s, ul ) ^ Afaa (s, t, u2) ^ non faulty_clock (q, r.sync_period)

2) r.proc(q).lclock E R (_'sync-peri°d)

^ s.proe(q).lclock E R (°'sync-peri°d)

A l.proc(q).lclock E _ t.sync_period)

pdurc: War clocktime

qdurc: Var clocktime

pdarb: Var clocktime

qdurb: Var clocktime

dur: Var clocktime

near: function[ciocktime, phases -. bool] ==

(A dur, ph : (1 - u) • duration (ph) < dur A dur < (1 + v) • d,,ration (ph))

brl: Lemma r.phase = compute A.IV'da(r,s, ui ) ^.A/'da(s, t, us)
D (s.phase = broadcast

A t.phase = vote

^ s.sync_period = r.sync_period

A t.sync_period = s.sync_period

A (Vpp :

nonfaulty_clock (pp, r.sync_period)

clock_ad vanced (r.proc (pp).lclock,

s.proc(pp).lclock,

duration (compute))

A clock _advanced ( s. proc(pp).lclock,

l.proc(pp).lch)ck,

d u ration (broadcast))))

brla: Lernma r.phase = compute A A/'d{,(r, s, ul )
D (s.phase = broadcast

A s.sync_perlod = r.sync_period

^ (Vpp :

nonfaulty_clock(pp, r.sync_perlod)

D clock_advanced (r.proc(pp).lclock,

s.proc(pp).lclock,

duration (compute))))
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br2: Lemma r.phase = compute ^ Afd_ (r, s, ul) A A/'d_(s, t, u2)

D s.phase --- broadcast

A t.phase = vote
A s.sync_period = r.sync_period

A i.sync_period = s.sync_period

A (nonfaulty_c]ock(p, r.sync_period)

( 3 pdurc :

near(pdurc, compute)

A s.proc(p).lclock = r.proc(p).lciock + pdurc)

A ( 3 pdurb :

near(pdurb, broadcast)

^ t.proc(p).lclock -- s.proc(p).lclock + pd,rb))

br3: Lemma r.phase -- compute ^ reachable(r) ^ Afa,(r, s, at ) A Afd,(.,, l, ,,2)

D s.phase = broadcast

A t.phase = vote
A s.sync_period = r.sync_period

A t.sync_period = s.sync_period

A (no,faulty.clock (p, r.sync_period )

A nonfa,lty_clock (q, r.sync_period)

D r.proc(p).lclock = r.proc(q).lclock

A ( =1pdurc :

near(pdurc, compute)

A s.proc(p).lclock = r.proc(p).lclock -{- pdurc)

A ( 3 pdurb :

near(pdurb, broadcast)

A t.proc(p).lclock = s.proc(p).lclock + pdurb)

A ( 3 qdurc :

near(qdurc, compute)

A s.proc(q).lclock

= r.proc(q).lclock + qdurc)

A ( 3 qdurb :

near (qd u rb, broadcast)

A t.proc(q).lclock

= s.proc(q).lclock + qdurb))

br3_aa: Lemma r.phase = compute

A reachable(r)

A nonfaulty_dock(p, r.sync_period)

A nonfaulty_clock(q, r.sync_period)

D r.proc(p).lclock = r.proc(q).lclock

Proof

p_brl: Prove brl from
brla,

.Afd_ {s,--s, t_--l, n_-.2, i_-pp},

next_phase {ph *-- broadcast},

distinct_phases

p_brla: Prove brla from

Afd,_ {s "- r, t *--s, a_--ul, i4--pp},

next_phase {ph _ compute},

distinct_phases
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p_br2: Prove br2
{pdurc .- s.proc(p).lclock - r.proc(p).lclock,

pdurb *- t.proc(p).lclock -s.proc(p).lclock} from

brl {pp *-- p},
clock_advanced

{X _ r.proc(p).lclock,

Y _ s.proc(p).lclock,

D ,- duration (compute) },

clock_advanced

{X ,- s.proc(p).lclock,

Y .- t.proc(p).lclock,

D .- duration(broadcast)}

p_br3.aa: Prove br3_a_ from
state_invariant {t .- r, da_prop .- (A s : lclock_eq(s))},

lclock_inv,

Iclock_eq {s .- r, i *-- p, j ,-- q}

p_br3: Prove br3

{pdurc _- pdurcOpl,

pdurb ,-- pdurb_pl,

qdurc .- pdurc_p2,

qdurb *- pdurbQp2} from br2, br2 {p _- q}, br3_aa

br4: Lemma r.phase = compute A reachable(r) A A/'aa(r, s, ul ) ^ A/'a_(s, t, u2)

s.phase = broadcast

A/.phase ----vote

A s.sync_period = r.sync_period

A t.sync_period = s.sync_period

A (non faulty_clock (p, r.sy nc_period )
A nonfaulty_clock(q, r.sync_period)

A Rq --- r.proc(q).lclock

A Rp = r.proc(p).lclock

A Sq = s.proc(q).lclock A Tp = t.proc(p).lclock

( 3 pdurc, pdurb, qdurc, qdurb :

near(pd u rc, compu re)

^ near(pdurb, broadcast)

A near(qdurc, compute)

A near(qdurb, broadcast)
A Rp = Rq

A Sq = Rq q- qdurc

A Tp = Sq - qdurc -F pdurc -4-pdurb))

p_br4: Prove br4

{pdarc _- pdurcQpl,
pdurb ,- pdurb_pl,

qdurc *-- qdurc_pl,

qdurb .- qdurb_pl} from br3
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br5: Lemma r.phase = compute A reachable(r) A Afao(r, s, uj ) A Xd_(S, t, us)

2) s.phase = broadcast

A t.phase -- vote

A s.sync_period ----r.sync_period

^ t.sync_period --- s.sync_period

A (nonfaulty.clock (p, r.sync_period)

A nonfaulty_clock(q, r.sync_period)

D s.proc(q).lclock E R (''sync-peri°d)

A t.proc(p).Iclock E R (t'sync-peri°d)

^ Lproc(p).Iclock

> s.proc(q).Iclock -i- duration(broadca._t)

- 2 * t, • duration(compute)

- v, duration (broadcast))

p_br5: Prove br5 from
br4

{ Rq _- r.proc(q).lclock,

Rp .-- r.proc(p).lclock,

Sq _- s.proc(q).ldock,

Tp .-- t.proc(p).iclock },

intS,

int5 {q .- p}

br6: Lemma (3 r :

r.pha._e = compute

^ reachable(r) A Afd_ (r, s, uz) A s.sync_period = r.sync_period)

D s.phase = broadcast

^ t.phase = vote

A t.sync_period = s.sync_period

A (nonfaulty_clock (p, s.sync_period)

A nonfaulty_clock (q, s.sync_period )

D s.proc(q).lclock E RO'sync'peri°d)

A t.proc(p).lclock E R Osync2peri°d)

A t. proc(p).lclock

_> s.proc(q).lclock + duration(broadcast)

- 2 * v * duration(compute)

- v * duration (broadcast))

p_br6: Prove br6 from br5

brT: Lemma ^/'do(x, s, u)

z.phase ----prev.phase(s.phase)

A (z.phase _ sync _ _.sync_period = s.sync_period)

p_br7: Prove br7 from

support_f6 {ph .-- z.phase},

_.o {_.-a:, t.-_, _.- u),
distinct_phases

br8: Lemma rea_:hable(s) A s.phase = broadcast

D (']z,u :

_..(_, .,,u)
A reachable(a:) ^ x.phase = compute A x.sync_period = s.sync_perlod)
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p_br8:Prove br8 {z .-- s+p2, u +---.+p2} from

reachable {t .- s},

reachable_in_n {t *-- s, k *-- k_pl},

reachable {t *-- s_p2, k *-- if k+pl = 0 then 0 else kCC+pl - 1 end if},

initial_da {s .- s},

br7 {z 4-- s_p2, s _-- s, u _-- uOp2},
prey_phase {ph _-- s.phase},

distinct_phases

brg: Lemma reachable(s) A Jq'd,(s, t, ,2) ^ s.phase : bro,_icast

t.sync_period = s.sync_period

A (nonfaulty_clock(p, s.sync_period) A nonfatdty_clock(q, s.sync_period)

D s.proc(q).lclock E R (''sync-peri°d)

A t.proc(p).lclock E R(*sync-peri°d)

A t.proc(p).lclock

>_ s.proc(q).iclock + duration(broadcast)

- 2 * t, • duration(compute)

- v * duration(broadcast))

p_brg: Prove br9 from br6 {r *-- zQp2, ul +- ,@p2}, br8

rtp0: Lemma Sq E R ('sync-peri°d) D Sq >_ 0

rtp0a: Lemma T >_ 0 2) frame_time * k + T >_ 0

p_rtp0a: Prove rtp0a from

mult.non_neg {z ,- frame_time, y ,- k},

*1 x *2 {z ,- frame_time, y ,-- k}

p_rtp0: Prove rtp0 from

• 1 E R (.2) {T ,-- Sq, i *-- s.sync_period, II ,- 0},

7 "(.1) {i *-- s.sync_period},

rtp0a {T *- lI_pl, k *- s.sync_period}

rtpl: Lemma reachable(s) A Afd,(s, t,-2) A s.phase = broadcast

Z) t.sync_period = s.sync_period

A (nonfaulty_clock(p, t.sync_period)

^ nonfaulty_clock(q, s.sync_period )

A enough_clocks(s.sync_period)

A Tp = t.proc(p).lclock

A Sq = s.proc(q).lclock

A Epsi

= 2 • v • duration(compute) + v * duration(broaxlcast)

A duration(broadcast) - Epsi _ 0

rt(p"sync-peri°d l qTp )

>_ rt(q*'sync-peri°cl )( Sq)

+ (1 - Rho), Iduration(broadcast) - Epsil

- 6)

p_rtpl: Prove rtpl from

rtp0,

br9,

ELT

{da .- s,
T2 "- Tp,
7"1 ,--Sq,

q,.-q,

bb *- duration(broadca-st) - Epsi }
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rtp2:Lemma reachable(s)

A s.phase = broadcast

A nonfaulty_clock(p, s.sync.period)

A nonfauity_clock(q, s.sync_period)

A enough_clocks(s.sy nc_period)

A Tp = t.proc(p).lclock

A Sq = s.proc(q).lclock

A Epsi

= 2 * v * duration(compute) + u * duration(broadca.st)

A duration(broadcast) - Epsi >_ 0

._(_sync-peri°d)t'P_

> rtq-'("sync-peri°d)#c-x_ov] + (1 - Rho) * Iduration(broadcast) - Epsil

-6

p_rtp2: Prove rtp2 from rtpl

rip3: Lemma reachable(s)

^ _d.(s,t,,,_)
A s.phase = broadcast

A nonfauity_clock(p, s.sync_period)

A nonfaulty_clock(q, s.sync_period)

A enough_clocks(s.sync_perlod) A t.sync_period = s.sync_period

D rt(*sync-peri°d)(t.proc(p) .Icl°ck)

> rt(qJsync-peri°d)(s.proc(q).lclock) + max_comm_delay

p_rtp3: Prove rtp3 from

rtp2

{ Epsi .- 2 * u * duration(compute) + u * duration(broadcast),

Sq ,-- s.proc(q).lclock,

Tp .-- t.proc(p).lciock},

broadcast_duration,

broadcast_duration2

rtp4: Lemma reachable(s)
AA:d.(s,t, u2)

A s.phase = broadcast

A non faulty_clock(p, s.sync_period)

A nonfaulty_clock(q, s.sync_period) A enouglLclocks(._.sync_period)

da_rt(t, p, t.proc(p).lclock)

da_rt(s, q, s.proc(q).lclock) + max_comm_delay

rtp4a: Lemma reax'hable(s) ^ Afar(s, _, u2) ^ s.phase = broadcast

5) t.sync_perlod = s.sync_period

p_rtp4a: Prove rtp4a from
•Afda {s ,-- s, _ ,-- t, u _ U2}, distinct_phases

rtp4b: Lemma reachable(s) A Afa,_(s, t, u) D reachable(t)

p_rtp4b: Prove rtp4b from

reachable {k .- k@p3},

reachable {g '-- s},

reachable_in_n {k _ kQp2 + I, s _ s, u *-- u}
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p_rtp4: Prove rtp4 from
rtp3,

rtp4b {u *- u2},

rtp4a,

da_rt_lem {da .- t, p _-- p, T ,-- t.proc(p).lelock},

da_rt_lem {da .- s, p ,--- q, T .-- s.proc(q).k:lock}

rtpS: Lemma reax'hable(s)
^ Ard_(S,t, u)

A s.phase -- broadcast

A s.proc(p).healthy > 0

A broadcast_received(s, t, p)

^(vq:
s.proc(q).healthy > 0

D da_rt(s, q, s.proc(q).lclock) + max.comm_delay

< da_rt(t, p, t.proc(p).lclock))

D broadcast_received(DAmap(s), DAmap(t), p)

p_rtpS: Prove rtp5 {q ,--- qq_p2} from

distinct_phases,

I),q.broadcast_received {s _ DAmap(s), t _-- DAmap(t), qq .- q},

DA.broadcast_received {qq *---qq_p2},

map_l {s ,-- s, i ,-- qqQp2},

map_4 {s 4-- s, i _ qq_p2},

map_4 {s _ t, i ,--- p},

A_a°

rtp6: Lemma reachable(s) A s.proc(p).healthy > 0

D nonfaulty_clock (p, s.sync_period)

p_rtp6: Prove rtp6 from

nfclk_inv,

state_inv_iant {t *-- s, da_prop _-- (), s: nf_c]ks(s))},

nLciks {i ,--- p}

rtp7: Lemma reachable(s) AA/'a°(s, t, u) A s.phMe = broadcast

2) enough.clocks(s.syne_perlod) ^ t.phase = vote

p_rtp7: Prove rtp7 from

Afau ,
state_invarlant {da_prop .- ( _ s : enough_hardware(s)), t ,--- s},

enough_inv,

enough_hardware {t .-- s},

next_phase {ph ,- s.pha.se},

distinct_phases

p_com_broadcast_5: Prove corn_broadcast_5 from
rtp4 {u_ .-- u, q ,-- qQp2, p ,--- i},

rtp5 {p .-- i l,

rtp6 {p _ i},

rtp6 {p .-- q_P2l,

rtp7

End

I)A_intervals: Module

Using DA_broadcast_prf

Exporting all with DA/emmas

Theory
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ds: Vat DSstate
da: Vat DAstate

k: Vat nat

ph: Vat phases

r, s, t, z: Vat DAstate

ss, lt: Vat DSstate

p, q, pp, qq: Vat processors

u, ul, u2: Vat inputs
to: Vat MBvec

h: Vat MBmatrix

MBfn: Vat" MBcons_fn

m, n, a, b: Var proc_plus

prop: Vat function[proc_plus -._ bool]

7",X, Y, TI , T2, BB: Var logical_clocktime

bb, ix, yy, zz, x2, Y2: Var clocktime
Tp, Sq, Epsi: Var clocktime

pdurc: Vat clocktime

qdurc: Var clocktime

pdurb: Vat clocktime

qdurb: Var c|ocktime
dur: "Car clocktime

Proof

br_int: Lemma r.phase = compute A reachable(r) A J_fda(r, S, n! ) A .A/'da(8, l, 02)

Z) s.phase = broadcast

A f.phase = vote

A s.sync_period -- r.sync.period

A t.sync_period = s.sync_period

^ (nonfaulty_clock(q, r.sync_period)

( :1qdurc, qdurb :

near (qd u rc, corn pu re)

A near(qd u rb, broadcast)

A s.proc(q).lclock = r.proc(q).lclock + qdurc

A t.proc(q).lelock = s.proc(q).h:lock + qdurb))

p_brAnt: Prove br_int {qdurc ,- qdurc_pl, qdurb _-qdurb_pl} from
br3 {p .- q}

intO: Lemma r.phase = compute

A reachable(r)

^ Afro(r, s, u_ ) A Afd, (s, t, us) ^ nonfaulty.clock(q, r.sync_period)
23 r.proc(q).lclock = r.sync_perlod, frame_time

A r.proc(q)Aclock 6. R (r'sync-peri°d)

p_int0: Prove i,t0 from

clkval_inv,

state_invariant {da._prop ,-- ( ,_r : Iclock_val(r)), t ,-- r},
Icloek_vM {i _ q, S *-- r},

*1 6. R (*_) {T .-- r.proc(q).lclock, i .-- r.sync_period, [I *-- 0},
T (.1) {i *---r.sync_period}
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intl: Lemma r.phase --- compute A reachable(r) ^ Afd_(r, s, ul ) A .Al'._o(s, t, u_)

D s.phase = broadcast

A/.phase = vote

A s.sync_period = r.sync_period
A t.sync_period = s.sync_period

A (non faulty_clock (q, r.sync_period)

D r.proc(q).lclock = r.sync_period * frame_time

A r.proc(q).lclock E R (r'sync-peri°d)

A a.proc(q).lclock E R (°sync-peri°d))

intla: Lemma zz _< yY A YP <-- zz D zx _< zz

p_intla: Prove intla

p_int I: Prove int I from
intO,

brant,

• 1 E R (.2)

{T ,-- s.proc(q).lclock,

,- s.sync_period,

II _-- qdurc_p2},

T (.1) {i *- s.sync_period},

pos_durations,

all_duratlons,

intla

{zz _- qdurc@p2,
lty _-- (1 - v) * duratlon(compute),

XZ _ 0},

intla

{zz ,- qdurc_p2,

py .- (1 + v) * duration(compute),

z z "- frame_time}

int2: Lemma rlphase = compute A reachablc(r) A .A/do(r, s, ul ) ^ .A/'d,(s, t, u2 )

D s.phase = broadcast

A t.phase = vote

A s.sync_period = r.sync_period
A t.sync_period = s.sync_period

A (nonfaulty_ciock(q, r.sync_period)

A r.proc(q).h:lock = r.sync_period • frame_time

D t.proc(q).lclock E R (lsync-peri°d))

int2a: Lemma near(qdurc,compute) A ne_r(qdurb, broadcast)

D 0 < qdurc + qdurb A qdurc + qdurb <_ frame_tinte

pAnt2a: Prove int2a from

pos_d urations,

all_durations,

• 1 x *2 {z .- (l - v), y *-- duration(compute)},

• 1 x *2 {z .-- (I - v), V 4- duration(broadcast)}

p_int2: Prove int2 from

7<.1) {i .- t.sync_period},

brant,
• 1 ¢/_.2)

{T .- t.proc( q ).lclock,

i *-- t.sync_period,

I[ *-- qdurc@p2 + qdurb_p2},

int2a {qdurc ,-- qdurc@p2, qdurb _ qdurb_}p2}
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int3:Lemma r.phase = compute ^ reachable(r) ^ Al'a,,(r, s, ul ) ^ A(,I, (s, t, u., )

D (nonfaulty_clock(q, r.sync_period)

D r.proc(q).lclock -- r.syne_period , frame_time

A r.proc{q).lclock E R (r'sync-peri°dl

A s.proc(q).lclock E R (''sync-peri°d)

A t.proc(q).lclock E R(' sync-peri°d))

p_int3: Prove int3 from intl, int2

int4: Lemma (r.phase - compute

A reachable (r)

A .M'd, (r, s, ul ) A Afdo(S, t, u2) A nonfaulty_clock(q, r.sync.period ))

D (r.proc(q).lcloek = r.sync_period • frame_time

^ r.proc(q).lclock E R (r'sync-peri°d)

A s.proc(q).iciock E R (_ sync_periodl

A t.proc(q).lclock E /t_tsync-pcri°d ))

p_int4: Prove int4 from Jut3

p_int5: Prove int5 from int4
End

elk_types: Module

Exporting all

Theory

realtime: Type is number

Iogical_clocktime: Type is number

physieal_clocktime: Type is number

clocktime: Type is number

z: War number

posnum: Type from number with ( ,_ z : x > 0)

pos_logical_clocktime: Type is posnum

posrealtime: Type is posnum

fraction: Type from number with (,_ z : 1 _ z ^ x >_ 0 ^ x _ 1)

period: Type is nat

End

elkmod: Module

Using rcp.defs, absmod, elk_types

Exporting all with rcp_defs, elk_types, al)smod Theory

_, 60, 6: posreaJtime

_, A: pos_logicaL(:locktime

frame_time, sync_time: pos_logieal_clocktime (* Changed from R, S *)

i: Vnr period

k: Var nat

7"o: Iogical_clocktime ,=--- 0

7g,l): fu action [period --, Iogical_clocktime] = (Jt i : T o + i * frame.time)

T_uext: Lemma 7 (i+1) = T (i) + frame_time
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T, II: Vat logical_ciocktime

T1, T_, To, T_: Var physical_clocktime

• 1 E/{(.2): function[logical_clocktime, period --- boolean] =

( ._ T, i : ( 3 II : 0 < II AII < frame_time A T = 7_0 + II))

• 1 E S('2): function[logicaLclocktime, period -* boolean] =

(_T,i: (311 :

0 < 13 ^ II < sync_time A T -- 7 gi) + frame_time - sync_time + II))

p, q, r: Vat processors

c.1 (*2): function [processors, physical_clocktime -- re',dtime]

log_to_phys: function[logicaLclocktinm -- physical_clocktinm] ==

(A T-- physical_clocktime : T)

z: Vat number

_-: function[number --_ number] == (A z: z/2)

p: fraction

Rho: fraction =

goodclock: function[processors, physical_clocktime,physical_clocktime

-* bool] =

( ,_ p, To, Tz¢ :

(VT_,T_ -
To <_T_ ^ To <_T2 A T, <_TN ^ 7_ <_TN

monotonicity: Theorem

(BTo,7_ :goodclock(p, To,Ttc)ATo <T_ ^To _(T2 A'I_ < 7_ ^7h _<Tt¢)

(T, > T_ _ c,(T_) >__,('r_))

A(._2): function[processors, period --* clocktime]

(* mean of the skeus uithin tolerance *)

Delta2: function[processors, processors, period ---. clocktime]

(* aeasured skeu *)

initial_Corr: function[processors -- clocktime] == ( _ p -- number : 0)

second_arg: function[processors, period --_ nat] == ( A p, i : i)

Corr(. .2) : Recurs|re function [processors, period -. clocktime] =

(_p,i : ifi>0

then Corr_ pred(0) + A(ppred('))

else initiaLCorr(p)

end ite) by seeond_arg

A_._2)(.3): function[processors, period,logical_clocktime

-- physical_clocktime] == ( _ p, i, T : T + Corr (0)

rt(._2)(*3): function[processors, period, h,gical_clocktime --* realtiu,e] --

( p,i,T:

skew: function[processors, processors, clocktime, period -- clocktime] ----

( )_ p, q, T,i -. clocktime : Irt(pi)(T) - rt{qO(T)[)

nonfaulty_clock: function[processors, period --_ boolean] =
(o) _(o) (*) ,(,-1-I)

()_p,i : goodclock(p, Ap (7 ),A, (7 " )))

116



num_measure: function[period, nat _ nat] == (A i, k : k)

num_good_clocks: Recursive function[period, nat ---, nat] =

()ti, k: ifk=0Vk > nrep
then 0

elslf nonfaulty_clock(k, i)

then 1 + num_good_clocks(i, k - 1)

else hum_good_clocks(i, k - 1)

end if) by num_measure

enough_clocks: function[period --_ bool] =

( A i : 3 * hum_good_clocks(i, nrep) > 2 * nrep)

SIA: function[period --. bool] == (A i : enough_clocks(i))

(* in current clock sync theory =

(LAMBDA i :
(FORALL r : (m + I <- r AWD r <- n) IMPLIES nonfaulty_clock(r, i)))

*)

S 1C: function[processors, processors, period -- bool] =

(Ap, q,i:(VT:
nonfaulty_clock(p, i) A nonfaulty_clock(q, i) A 7' E It'(i)

D skcw(p, q, T, i) _< ?i))

SIC_lemma: Lemma S1C(p,q,i) D SlC(q,p,i)

Sx: function[period ---, bool] = (A i: SIA(i) D (Vp, q: SIC(p, q, i)))

$2: function[processors, period ---, bool] =

( ,xp, i: (ICo,-,-_'+') - Cor,'_')l < s))

(* The following three theorems were proved in the clock sync theory.

They are taken as axioms here. *)

adj_always_pos: Axiom A_)(T _k)) > T O

Theorem_l: Axiom S_(i)

(* THEOREM *)

Theorem_2: Axiom $2 (p, i)

(* THEOREN *)

A0: Axiom skew(p, q, T (°),0) < go

AI: Lemma nonfa,,Ity_clock(p, i) = goodclock(p, Atp°)(T(°)), A(p0(T(i+l)))

A2: Axiom nonfaulty_clock(p,i)

A nonfaulty_clock(q, i) A SIC(p, q, i) ^ S2(p, i)

Ir,_Ol _<sync_time

^(37b :Tb E _0 ^ Irt,,('_(70"+ -qp,^(O__rt_O(To)l < _)

A2_aux: Axiom ^(i)_pp--_0

m: processors (* -axl,._ number of faulty clocks *)
CO: Axiom m < nrep ^ m 5 nrep - num_good_clocks(i, nrep)

CI: Axiom frame_tlme > 3 * sync_time
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C2: Axiom sync_time >_ E

C3: Axiom E >_ A

C4: Axiom A > 6 + _ + ae • syne_time

C5: Axiom 6 > 60 + p* frame_time

C6: Axiom _ > 2. (t + p * sync_time) + 2 • m • A/(nrcp - m)

-I- nrep * p * frame_time/(nrep - m)

+p*A

+ nrep • p • E/(nrep -- m)

sync_thm: Theorem

enough_docks(i)

_(¥p,q:

(V T : nonfaulty_dock(p, i) A nonfaulty_dock(q, i) A T E 1/_i)

Irt(pO(T)- rt(O(7')l < 6))

Proof

p_sync_thm: Prove sync_th]n from

Theorem_l [i .- i1, S1 {i *-- i}, SIC [i _-- i}
End

clkprop: Module

Using clkmod, DA

Exporting all

Theory

T, 7"2,T_, T3, T4, B B, To, TN, TX, TY: Var logical_docktime

p, q: Var processors
de: Vat DAstate

i: Vat period

ft2: Lemma goodclock(q,T°,T_ + B B) ^ (T, >_ T °) A ( B B >_ T °)

Icq(T,+ BB) - cq(T,) - BB l<_Rho • IBBI

ft3: Lemma goodclock(q, To,T1 + BB) A (Tl >_ T °) A (BB >_ TO)

D (I - Rho) • IBBI <_%(7, + BB) - cq(T,)

A cq(T_ + BB) - cq(Tx) _< (1 + Rho) * [BB[

ft4: Lemma enough_docks(i)

^ nonfaulty_clock(p, i) ^ ,,onfaulty_clock(q, i) ^ T E R (0

D -t <: ,'t_0(T) - rt(q')(T) A rt_,0(T) - rt(q0(T) _< t

ftS: Lemma goodclock(q, To,TI + Corr(q 0 + BB)

^ (T, > TO) ^ (T_ + Co_ ') >_7_) ^ (BB > TO)
(I - Rho) • IBBI _<rt(O(T, + BB) - rt(qi)(T,)

^ rt(¢)(7; + BB) - rt(q')(T,) < (l + Rho) • IBBI

ft6: Lemma T2 = TI + BB

^ goodclock(q,T°,Tj + Corr(q i) + RB)

^(T, _>TO)

^ (T,+ Co_(_'_>_TO)

^(nn >_T°)
^ enough_docks(i)

^ nonfaulty_dock(p, i) ^ nonfaulty_clock(q, i) ^ T2 E R (0

r/(v')(T_) -> r/l_')(T, ) + (1 - Ill.,) • IZ_BI-
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ft7: Lemma 7"3 <_ 7"4 A goodclock(q,T°,7_) D goodclock(q,T°,7_)

ft8: Lemma T1 + BB _< T (i+_) ^ nonfaulty_clock(q,i)

D goodclock(q, T °, 7"1 -6 Corr{q 0 + BB)

ft9: Lemma T2 = T] -6 BB

^ "& < To+ _)
^ (T_ > 7°)

^ (7"1 + Corr(q 0 >_ 7 ° )

^ (BB > T °)
^ enough_clocks(i)

^ nonfaulty_clock(p, i) A nonfaulty_clock(q, i) ^ 7_ E R (i)

D rt(pi)(T2) __ rt(qO(Tl) .6 (1 - Rho) • IBnl-

ftl0: Lemma T2 E R (0 D T2 __ T ('+1)

ftll: Lemma T2 = T_ + BB

^(T, >TO)
A (Tl + Corr (i) __ TO)

^ (Bn >_TO)
A enough_clocks(i)

^ nonfaulty_clock(p, i) A nonfaulgy_clock(q, i) ^ 7_ 6 R (0

D rt(O(T2) >_ rt(q')(T,)+ (1 - Rho) • IBBI-

ftl2: Lemma Tt E R (') _ (T_ .6 Corr (i) >_ T °)

GOAl,: Lemma Ta = Tl + BB

^ (7"1> 7°)
^ (1_tJ z TO)

A nonfaulty_clock(p, i)

A nonfaulty_clock(q, i) A enough_clocks(i) ^ T2 E R (i) A Tl E R (0

D rt_i)(Th) > rt(qi)(T,) -6 (1 - alto). IBBI-

nfcJem: Lemma nonfaulty.clock(p, i + 1) D nonfaulty_clock(p, i)

Proof

nfc_a: Lemma T ('+')+ Cor,_ ')< T 0+_) + Corr(p'+')

p_nfc_a: Prove nfc_a from

7_*_) {i _- i+ l},

Theorem_2 {i .-- i},

s2 (i .- i),
abs_main {x .- Corr (i÷,) - Corr_ O, z ,-- _},

C1,
C2

p_nfc/em: Prove nfcAem from

non faulty_clock,

nonfaulty_clock {i *-- i + 1},

goodc]ock

{TN _" T (i+2) + Corr (i+1),

To .-- 7 (°) + Corrg °),

T_ ,-- T_ _p4,

T_ .-- T2_p4},

goodclock {'IN '-- 7_'+1) + Corr (0, To .- T (°) -6 Corr(p°)},
lt[C_a,
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p_ft2: Prove ft2 from

goodclock

{p ,-- q,

T0 ,-.-T0,

T# .-- 7"1 + BB,

T2 .- T,,
T, .---(T, + BB)}

p_ft3: Prove ft3 from

ft2,

al_Jeq {x ,- cq(T, + BB) - cq(T_) - BB, z *--Rho • IBBI} ,
abs_ge0 {x .- BB}

p.ft4: Prove ft4 from

sync_thm {i .-- i}, abs_leq |_ ,--- rt(p0(T) - rt(qi)(7'), z .-- 6}

p_ft5: Prove ft5 from

ft3 {TI ,-- Tt + Corr(qO},

rt_;_)(*3) {p _- q, v - T,, i - i},
,t_,;')(,_) {p - q, T-- 7",+ BB, i _- i}

p_ft6: Prove ft6 from ft4 {T *- 7_ }, ft5

p_ft7: Prove ft7 from

goodclock

{p_q,
To.--TO,
TI ,- T_ @p2,

T2 .- T2Op2,
T_ .--T, },

goodc|ock {p .-.-q, To *-- T °, TN _ T3 }

ft8a:Lemma Corr (°)= 0

p_ft8:Prove ft8 from

nonfaulty_clock {p _-- q, i *- i},

ft7 {T3 -- T, + tort(, 0 q-BB, T, _--T ('+') + Corr(qi)},
_*') {i .- 0l,
[t8a

p_ft8a: Prove ft8a from Corr(*l _) {i .-- O, p .-- q}

p_ft9: Prove ft9 from ft6, ft8

p_ftl0: Prove ftl0 from

• 1 E R (.2) {T _- '/2, II *-- frame_thne}, T TM) {i *-- i}, T (*') {i *--- i-I- 1}

p_ftll: Prove ft]l from ftlO {i _-- i}, ft9

p_ft]2: Prove ft12 from

adj_aJways_pos {k -- i, p _- q}, ,] E //(,2) {7',-- T,, i _--i}

p_GOAL: Prove GoAL from ftll, ftl2

End

DAinvariants_tcc: Module

Using DA_invariants

Exporting all with DAinvariants

Theory
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ii: Vat naturalnumber

p: Var rcp_defs.processors

j: Vat tcp_defs.processors

i: Var rcp_degs.processors
z: Vat DA.DAstate

nl: Var nataralnllmber

k: Var aatura]number

u: Vat rcp_defs.inputs
t: Var DA.DAstate

s: Vat DA.DAstate

Corr_lem_TCCl: Formula (ii > O) D (ii - 1 >_ O)

Proof

Corr_lem_TCCI_PROOF: Prove Corr_lem.TCCl

End DA_invariants_tcc

l)A_map_prooLtcc: Module

Using DA_map_proof

Exporting all with DA_map_proof

Theory

a: Vat rcp_defs.proc_plus

p: Vat rcp_defs.processors
m: Vat rcp_defs.proc_plus p_mll_ba.se_TCCl: Formula ((0 _> 0)A (0 _< nrep))

p_rnll_i,ld_TCCl: Formula

(( ifa = nrep then nrep else a + 1 end if_> 0)

A ( if a = nrep then nrep else a + 1 eud if < nrep))

p_map_l_TCCl: Formula ((nrep _> 0) A (nrep _< nrep))

Proof

p_ml 1_base_TCC' 1_PROOF: Prove p_mll_base_TCC 1

p_mlI_ind_TCCI_PROOF: Prow; p_mll_ind_TCCl

p_map_I_TCCI_PROOF: Prove p_map_ I_q'CCI

End DA_map_prooLtcc

DA_support_prooLtcc: Module

Using DA_support_proof

Exporting all with DA_support_proof

Theory

q: gar naturalnamber

a: Vat rcp_defs.proc_plus

nl : Var naturalnumber

m: Var rcp_defs.proc_plus

p: Vat rcp_defs.processors

p_sll3_base_TCCl: Formula ({0 _> 0) A (0 _< nrep))

p_sl13_iad_TCCl: Formula

(( if a = nrep then nrep else a + I end if_> 0)

A ( if a = nrep then _lrep else a + I end if< nrep))
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p_support_13_TCCl:Formula((arep_ 0) ^ (nrep -< nrep))

p_sl] 5Jnd_TCCJ: Formula
(( ifq < nrep then q+ 1 else nrep end if> 0)

A ( |fq < nrep then ¢ + I else nrep end if_< nrep))

Proof

p_sl 13.base_TCC l_PROOF: Prove p_sl 13_base_TCC 1

p_sI13_ind_TCCI_PROOF: Prove p_sll3_ind_TCC!

p_su pport_l 3_TCC I _PROOF: Prove p_support_ 13oTCC 1

p_sI15jnd_TCCI_PROOF: Prove p_sllS_ind_TCCl

End DA_support_prvoLtcc

DA_to_DS_tcc: Module

Using DA_to_DS

Exporting all with DA_to_DS

Theory

da: Var DA.DAstate

s: Var DA.DAstate

t: Vat DA.DAstatc

k: Var naturalnumber

M B f n: Vat function[rcp_defs.processors ---*rcp°defs.MBvec]

ss_upd_te_TCCl: Formula (-,((k = 0) v (k > nrep))) :3 (k - 1 >_ 0)

ss_update_TCC2: Formula (-_((k = 0) v (k > nrep))) D ((k > 0) ^ (k _< nrcp))

ss_update_TCC3: Formula

(-'((k = O) V (k > nrep))) D dg.rnegsure(da, k) > da_measure(da, k - 1)

MBmatrix_cons_TCCl: Formula

(-((k = 0) V (k > a,ep)))

MBmc_measure(MBfn, k) > MBmc_measure(MBfn, k- 1)

reachable_in.n_TCCl: Formula (-_(k = 0)) D (k - 1 >_ 0)

reachable_in_n_TCC2: Formula

(-(k = 0)) _ da..measure(t, k) > da_measure(s, k -- ])

Proof

ss_update_TCCl_PROOF: Prove ss_update_TCCl

__update_TCC2_PROOF: Prove ss_update_TCC2

s.q.update_TCC3_PROOF: Prove ss_updatc_TCC3

MBmatrix_cons_TCCl_PROOF: Prove MBrnatrix_cons_TCC1

reachable.in_n°TCCl_PROOF: Prove reachable_in_n_TCC1

reachable_in_n_TCC2_PROOF: Prove reachable_in_n_TCC2

End DA.to_DS_tcc

DA_tcc_proof: Modu]e

Using clk_types_tcc, clkmod_tc_:, DA_map_prooLtcc, DA_support_prooLtcc
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Exporting all

Theory

Proof

posnum_TCCl_PROOF: Prove posnum_TCC! |x _-- l}

fraction_TCCl_PROOF: Prove fraction_TCCl {x 4-- (I}

C6_TCCI_PROOF: Prove C6_TCCI from CO

p_slI5_ind_TCCI_PROOF: Prove p_sllS_ind_TCCl from processors_exist_ax

Rho_TCCI_PROOF: Prove Rho_TCCI (* needs printerpdivide = yes *)

End

DA_broadcast_prLtcc: Modllle

Using DA.broadca,4t_prf

Exporting all with DA_broadcast_prf

Theory

i: Vat rcp_de[s.processors

q: War rcp_defs.processors

qq: Vat rcp_defs.processors

II: Vat number

x: Var DA.DAst_te

k: Var naturalnumber

u" War rcp_deIs.inputs

s: Var DA.DAstate

qdurb: Var number

qdurc: Var number

pdurb: Vat number

pdurc: Var number

p_br8_TCCl: Formula ( if k = 0 then 0 else k - 1 end if> 0)

Proof

p_br8_TCCI_PROOF: Prove p_brS_TCC1

End DA_broadca.st_prf_tcc

clk_typ<'s.tc<': Module

Using dk_types

Exporting all with elk_types

Theory

x: Var number

posnum_TCCl" Formula (3 _ : z > 0)

fr_tiou_TCCl: Formula (3x : 1 > xAz _> 0A_, _ 1)

Proof

posnum_TCCl_PROOF: Prove posnum_TCCl

fra_ction_TCCI.Pl_OOF: Prow _. fraction_TCC1
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End clk_types_tcc

clkmod.tcc: Module

Using clkmod

Exporting all with clkmod

Theory

i: Var natura]numbcr

k: Var naturalnumber

p: Var rcp_defs.processors

halLTCCI: Formula (2 _ 0)

Rh0_TCCI: Formula (! _> _ ^ _ > 0 A _ _ l)

Corr_TCCI: Formula (i > 0) D second_arg(p, i) > scco.d_arg(p, I,rcd(i))

nu m_good_clocks_TCC1 : Formula

(-,(k = 0 V k > nrep)) D ((k > 0) A (k _ nrcp))

num_good_clocks_TCC2: Formula

(nonfaulty_clock(k, i)) ^ ('_(k = 0 V/¢ > nrcp)) _ (k - I__ 0)

nu m_good_clocks_TCC3: Formula

(-(.onf_ulty_do_k(t,/))) ^ (-(t = 0 v k > nrep)) _ (k - ! > 0)

num_good_clocks_TCC4: Formula

(nonfaulty_clock(k, i)) A (-.(k = 0 V k > nrep))

D hum_measure(i, k) > num_measure(i,k- 1)

num_good_clocks_TCC5: Formula

(-,(nonfaulty_clock(k, i))) A ('-(k = 0 v k > nrep))

num_mea.qure(i, k) > num_measure(i, k - l)

C6_TCCI: Formula ((nrep - m) _ O)

Proof

half_TCCI_PROOF: Prove half_TCCl

Rho_TCCl_PROOF: Prove Rho_TCCI

Corr.TCCl_PROOF: Prove Corr_TCCI

num_good_clocks_TCCl_PROOF: Prove num_good_ciocks_TCCl

num_good_clocks_TCC2_PROOF: Prove num_good_clocks_TCC2

num_good_clocks_TCC3_PROOF: Prove num_good_clocks_TCC3

num_good_clocks_TCC4_PROOF: Prove num_good_clocks_TCC4

num_good_clocks_TCC5_PROOF: Prove num_good_clocks_TCC5

C6_TCCl_PROOF: Prove C6_TCCI

End clkmod_tcc

top: Module
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Using rcp_defs, generic_FT, sets[processors], cardinality [processors],
nat_inductions, noetherian[proc_plus, lessp], US, RS, RS_majority, RS_to_US,

RSJemmas, RS_invariants, RS.top.proof, RS_tcc_proof, rcp_defs_tcc,

RS.to_US_tcc, DS, DS_to_RS, DSJemmas, DS_top_proof, DS_map_proof,
DS_support_proof, multiplication, absmod, clk_types, ciknlod, DA, DA_to_DS,

DAJnvariants, clkprop, DA_lemmas, DA_top_proof, DA_map_proof,

DA.supporLproof, DA_broadcaaLpr f, DAJntervals, rcp_defs_tcc,

DS_to_RS_tcc, DS_support_prooLtcc, DS_map_prooLtcc, DA_invariants_tcc,

DA_map_prooLtcc, DA.support_prooLt(:c, DA_to_DS_tcc, c|k_types_tcc,

clkmod_tcc, DA_tcc_proof, DA_broadc_t_prLtcc

Theory

u: Vat inputs
usl, us2: Var Pstate -

rsl, rs2: Var RSstate

dsl,ds2: Vat DSstate

dal,da2: Vat DAstate

RS_frame_commutes: Theorem

reachable(rsl) A A/'r,(rsl, rs2, u) 2) Af_0(RSmap(rsl), RSmap(rs2), u)

RSJnitiaLmaps: Theorem initiaLrs(rsl) D initial.us(RSmap(rsl))

DS_frame_commutes: Theorem

dsl.phase = compute A frame_N_ds(dsl, ds2, u)

D Af,_ (DSmap/ds]), DSmap(ds2), u)

DS_initiaLmaps: Theorem initiaLds(dsl) 2) iaitiaLrs(DSmap(ds!))

DA_phase_commutes: Theorem

reachable(dal) A A/'a_(dal, da2, u) D A/'d,(DAmap(dal), DAmap(da2), u)

DA_initial_maps: Theorem initial_da(dal) D initial_ds(DAmap(dal))

Proof

p_RS_frame_commutes: Prove RS_frame_commutes from

RS_to_US.frame_commutes {s ,- rsl, t ,- rs2}

p_RSJnitial_maps: Prove RSJttitial_maps from

RS_to_US.initiaLmaps {s ,- rsl }

p_DS_frame_commutes: Prove D.q.frame_comm,tes from

DS_to_RS.frame_commutes {s .- dsl, t .- ds2}

p_DSJnitial_maps: Prove DSJnitial_maps from

DS_to_RS.initial_maps {s ,- dsl }

p_DA_phase_commutes: Prove DA_pha.qe_commutcs from

DA_to_DS.phase_commutes {s ,- dal, t *-- da2}

p_DAJnitial_maps: Prove DAJnitiaLmaps from

DA_to_DS.initiaLm_ps {s .- dal }

End

rcp_defs: Module

Exporting all

Theory
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p:Var nat
Pstate: Type (* computation state of a single processor *)

inputs: Type (* type of external sensor input *)

outputs: Type (* actuator output type *)
MB : Type (* mailbox exchange type *)

nrep: nat (* nmaber of
initial_proc_state: Pstate (*

recovery_period: nat (*

recovery_period_ax: Axiom

processors_exist_ax: Axiom

replicated processors *)

assumes each processor begins identically *)

number of healthy frames required to recover

from transient fault plus one *)

recovery_period > 2

nrep > 0

processors: Type from nat with (), p : (p > 0) ^ (p _< nrep))

MBvec: Type = array [processors] of MB

MBmatrix: Type = array [processors] of MBvec

phases: Type = (compute, broadcast, vote. sync)

ph: Vat phases

next_phase: function[phases -- phases] =

(_ph: if ph =- compute

then broadcast

elsif ph = broadcast then vote elslf ph = vote then sync else compute

end if)

prev_phase: function[phases --* phases] =

( A ph : if ph = compute

tllen sync

elslf ph = broadcast

then compute

elsif ph = vote then broadcast else vote

end if)

proc_plus: Type from nat w|tlL ( _ p : (p _> 0) ^ (p _< nrep))

k, re,a, n, b: Var proc_plus

prop: Vat function[proc_plus -- boo]]

lessp: function[proc_plus, proc_plus -. bool] == (A m, n : m < n)

processors_ind uction: Lemma

(V prop : prop(0) A (V m : m < nrep A prop(m) 2) prop(m + 1))

2) (V n: prop(n)))

Proof

Using noetl.erian [proc_plus, les._p]

reachability: Lemma a _ 0 ¢_ ( 3 b : a = b + 1)

p_processors_induction: Prove processors_|hal.orion {m *- b@P2} from

general_induction (p _ prop, d *- n, d2 .- m},

teachability {a ,- all@P1}

p_welLfounded: Prove well_founded {measure .-- (A k -- nat : k))

p_reachability: Prove teachability {b .- if a = 0 then 0 else a - 1 end if}

End

sets: Module IT: Type]

Exporting all

Theory
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set:Typeis function[T--* bool]

z,y,z: VarT

a, b: Var set
*I U *2: function[set, set --* set] --= ( )_ a, b: ( A z: a(x) V b(z)))

.I N ,2: function[set, set ---*set] --= ( )_ a, b: ( A z : a(z) A b(z)))

*1 \ *2: function[set, set --_ set] == ( )_ a, b: ( _ _:: a(z) A -,b(_c)))
add: function[T, set ---* set] == ( )_ z, a : ( A y: z = y V a(y)))

singleton: function[T --* set] ---- ( _ x : ( )t y : y - _))

*| C *2: function[set,set --* bool] -- (_ a, b: (V z: a(z) D b(z)))

*i E *2: function[T, set --* bool] ---- (_ z,b: b(x))

empty: function[set --_ boo|] -- ( )t a: (V z: --a(z)))

_: set == ( )_ z : false)
fuliset: set ---- ( A x : true)

extensionality: Axiom (Vx : z E a = z E b) D (a = b)

End sets

(:ardinality: Module [r: Type]

Using sets[T]

Exporting all

Assuming

z,y,z: Var T

N: Var nat

f: Var function[T --* nat]

finite: Formula (3 N,I: (Yz,y: f(z) __ N A (f(x) = I(Y) D z = y)))

Theory

a, b, c: Var set

card: function[set ---* nat]

card_ax: Axiom card(a u b) + card(a N b) = card(a) + card(b)

card_subset: Axiom a C b D card(a) < card(b)

card_empty: Axiom card(a) = 0 ¢_ empty(a)

empty_prop: Lemma card(a) > 0 D ( 3 x : x E a)

card_prop: Lemma a C c A b C c A 2 * card(a) > card(c) A 2 * card(b) > card(c)

D card(a N b) > 0

Proof

empty_prop_proof: Prove empty_prop {z _- z_p2} from card_empty, empty

subset_union: Sublemma a C c A b C c D a U b C c

subset_union_proof: Prove subset_union from

*1 C *2 {z .-- z_p3, b ,--- c),

*1 C *2 {z *-'- zt_p3, a _ b, b _ c],

*1 C.2 {a,---aUb, b,---c}

m, n, p: Var nat

twice_prop: Sublcmma2*m>pA2*n>pDm+n>P

twice_proof: Prove twice_prop
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card_proof: Prove card_prop from

twice_prop {m .- card(a 5, n _ card(b), p .-- card(c)},

card_ax,

subset_anion,

card_subset {a .-- a O b, b .- c}

Elld cardinality

natSnductions: Module

Theory

i, j: Var nat

P.l_l12,n3: Vat nat

p: Var function[nat -- bool]

nat_complete: Axiom

(Vn, : (V,,_ : (n._ # n,) _ p(-3)) D p(n,)) _ (V,,_ : p(n_))

,,at_induction: Axiom (p(0 5 A (¥ n, : p(n,) 3 p(n, + 15)5 2) (V ._: p(n:))

nat_induct_by_2: Axiom

(p(0) A p(1) A (V n, : p(n,) _ p(n, 4- 2))) 3 (V n2 : P("2))

Eud nat_inductions

noethcrian: Module [dora: Type, <: f.,nction[dom, dora -- booll]

Assuming

measure: Var function[dora -. nat]

a, b: Var dom

well_founded: Formula ( 3 measure : a < b 2) measure(a) < measure(b))

Theory

p, A, B: Var function[dora _ bool]

d, d_, d2: Var do,n

general_induction: Axiom
(Vd, : (Vd_: ,h < d, 3 p(d_)) 3 p(d,)) 3 (Vd: p(d))

End noetherian

multiplication: Module

Exporting all

Theory

z, y, z, z_, 1/1, zl, z2, Y2, z_: Vat number
*1 × *2: function[number, number --* number] = (X z, y: (z * y))

muit_ldistrib: Lemma z × (11 + z) = z × y + • × z

mulLldistrib_minus: Lemma z × (y - z) = z × y - z × z

muit_rident: Lemma z × 1 = z

mult_lident: Lemma 1 × z =

distrib: Lemma(z+y)×z=z ×z+y×z

distfib_mimm: Lemma (z- y) × z = z × z- y × z
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mult_non_neg: Axiom ((z _ 0 A9 > O) V (x < 0 A.V _ 0)) ¢_ z × 9 _ 0

mult_pos: Axiom((z>0Ay>0) V(x<0Ay<0))C;_x×y>0

malt.corn: Lemma z x y = y x z

pc, s.product: Lemma z >_ 0 A y >_ 0 D z x y >_ 0

mult_leq: Lemmaz>_0Az_y2) zxz>yxz

mnlt_leq_2:Lemmaz_>0Az_>gDzxz_>zx9

mult_10: Axiom 0 x x = 0

mult_gt: Lemmaz>0Az >y Dz xz>y×z

Proof

mult_gt_pr: Prove mult_gt from

mult_pos {z .- x - 9, 9 "- z}, distrib_minus

distrib_minus_pr: Prove dlstrib_minus from

mult_ldistrib_minus {z .-- z, _/_ x, z ,-- y},

malt_corn {_c _-- a: -- y, y _ z},

mult_com {// *-- z},

muir_corn {_ _- 9, Y 4"- z}

mult_leq_2_pr: Prove multleq_2 from

mult_ldistrib_minus {z *-- z, _/,-- :_, z *-- y},

mult_non_neg {z ,-- z, //_-- z -- _/}

mult_leq_pr: Prove mult_hq from

distrib_minas, mtdt_non_neg {z 4-- x. - Y, Y _ z}

mult_com_pr: Prow: mult_com from .1 x *2 , .1 x *2 {z _- y, y ,-- x}

pos_product_pr: Prove pos_product from mult_non_]teg

mult_ride,Lt_proof: Prove mult_rident from .1 x *2 {y *-- 1}

mult_lident_proof: Prove mult_lident from _1 x *2 {z .- 1, 9 '- z}

distrib_proof: Prove distrib from

• 1 x.2 {_-z+_/, 9*-z},

• 1 x ._. {_/.- z},

• 1 x.2 {z,- y, y_-z}

mult_ldistrib_proof: Prove mult_ldistrib from

• I ×.2 {y.-9+._, _.,--_}, ,l ×,_,.I ×,2 {.v,---I

mult_ldistrib_minus_proof: Prove mnltAdistrib_minus from

.1 × .2 {y .- y - z, • --- z}, .z x .2, .1 x .2 {y .-- z}

End

abs,nod: Module

Using multiplication

Exporting all

Theory
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z,y, z, za, yl, zl, z2,1_, z2: Vat number

[, I[: Definition function[number -* number] =

(Az:(ifx<O then -z else x endlf))

aim_main: Lemma [zI< z D (z < z ^-z < z)

abs_leq_0: Lemma [z - y] _< z D (x - y) _< z

abs_diff: Lemma [_c - Yl < z _ ((x - y) < z ^ (it - z) < z)

aim_leq: Lemma Ix[ < z 3 (z < z ^ -x < z)

aim_bnd: Lemma0_<zA0<xAz<zA0<yAy<zDIx-itl <z

abs_l_bnd: Lemma [z- y[ < z D z < y + z

aim.2_bnd: Lemma [z - y[ _< z D z > It - z

abs_3_bnd: Lemmaz__y+zAz>y-z23[z-yl<z

aim.drift: Lemma Ix - V[

aim_corn: Lemma [_. - y[

_im_drift_2: Lemma

aim_geq: Lemma z > y A

< z^l_',-xl < z, _ Ix_ -itl < z+-_,

z,^liti -yl <z2 31_, -it_l<z+z, +z2

It >_0 _ I_1_>I_1

abs_ge0: Lemma x >_ 0 2) [z[ = z

abs_plus: Lemma Ix + Y[ < Ixl + lYl

aim.diff_3: Lemmaz-it<zAit--z <zDIz--lt]_<z

abs_eq: Lemma [z - Yl = [Y - zl

Proof

aim_plus_pr: Prove aim_plus from ], 1[ {z .- z +it}, ]* 1] , [, 1[ {z _ It}

aim.diff_3_pr: Prove abs_diff_3 from [ * 1[ {z ¢-- z - It}

abs_ge0_proof: Prove abs_ge0 from [ • 11

abs_geq_proof: Prove aim_geq from [ * II , [ * 11 {z ,- t:}

aim_drift_2_proof: Prove aim_drift_2 from

aim_drift,

aim_drift {z _ ?/, y ,-- It1, z ,-- z2, zl .- z + zl },

abs_com {z .-- It1 }

aim_corn_proof: Prove abs_com from I * 11 {z _ (z - It)}, 1,1[ {z .-- (it - z)}

aim_drift_proof: Prove abs_dtift from

aim_l_bnd,

xbs_l_bnd {x _ zl, y *---z, z _-- zl },
abs_2.bnd,

aim_2_bnd {_ _ zl, y ,-- z, z ,--- zl },
abs_3_bnd {z _-- xt, z _'- z+zl}

abs_3.bnd_proof: Prove abs_3_bnd from ], 11 {x _ (x - y)}

abs.m_in_proof: Prove aim_main from [ * 11

aim_leq_0_proof: Prove aim/eq_0 front I * I1 {x .-- z - y}
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abs_diff_proof:Prove abs_diff from I * 1[ {z .- (x - y)}

abs_leq_proof: Prove abs_leq from [* l[

abs_bnd_proof: Prove abs_bnd from [ * 11 [x *- (z - y)}

abs_l_bnd_proof: Prove abs_l_bnd from [ * 11 {z -- (_ - y)}

abs_2_bnd_proof: Prove abs_2.bnd from [ • 1[ {x .- (x - y)}

End absmod

rcp_defs_tcc: Module

Using rcp_defs

Exporting all with rcp_deh

Theory

p: Var naturalnamber

m: Var proc_plus

a: Vat proc_plus

prop: Vat functioll[proc_plus --* boolean]

dj: Vat proc_plus

b: Var proc_plus (* Existence TCC generated for processors *)

processors_TCCl: Formula ( 3 p : (p > 0) A (p _ step))

proc_plus_TCCl: Formula (3p : (p -> 0) A (p __ nrep))

processors_indaction_TCCl: Formula ((0 _> 0) ^ (0 _< step))

proeessors_ind action_TCC2: Formula

(m < nrep A prop(m)) A (prop(0)) 3 ((m + 1 __ 0) A (m + 1 _ nrep))

p_reachability_TCCl: Formula

(if a--0 then 0 else a- l end if_> 0)

^(( if a = 0 then 0 else a- 1 end if_> 0)

A(ifa=0then0elsea-lendlf<nrep))

Proof

processors_TCCl_PROOF: Prove processors_TCCl

proc_plus_TCCl_PROOF: Prove proc_plus_TCC1

processors_induction_TCCl_PROOF: Prove processors_indaction_TCCl

processors_ind.ction_TCC2_PROOF: Prove processors_indaction_TCC2

p_reachability_TCCl_PROOF: Prove p_reachability_TCCl

End rcp_dcfs_tcc
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Appendix B

LaTeX-printed Supplementary Specification Listings

rcp_defs: Module
(* This rcp_defs module differs slightly from the original. Several

definitions have been moved to nee modules; the originals have

been commented out. *)

Exporting all

Theory

p: Var nat
inputs: Type (* type of external sensor input *)

outputs: Type (* actuator output type *)

nrep: nat (* number of replicated processors *)

recovery_period: nat (* nmaber of healthy frames required to recover
from transient fault plus one *)

recovery_period_ax: Axiom recovery_period > 2

processors_exist_ax: Axiom nrep > 0

processors: Type from nat with (_ p : (p > 0) A (p __ nrep))

phases: Type = (compute, broadcast, vote, sync)

ph: Var phases

next_phase: function[phases --* phases] =

(_ph: if ph -- compute
then broadcast

elslf pit = broadcast then vote elsif ph = vote then sync else compute

end if)

prev_phase: function[phases -- phases] =

( ._ ph : if ph = compute

then sync

elslf ph = broadcast

then compute

elsif ph = vote then broadcast else vote

end if)

proc_plus: Type from nat w|th ( )_ p : (p > O) A (p _< nrep))

k, m. a, n, b: Var proc_plus

prop: Var function[proc_plus -+ heel]

lessp: function[proc_plus,proc_plus --_ bvol] == (), m, n :m < n)

processors_induction: Lemma

(V prop: prop(0) A (V m: m < nrep A prop(m) D prop(m + 1))

D (Vn: prop(n)))

Proof

Using noetherian [proc_plus, lessp]

reachability: Lemma a _ 0 ¢¢ ( :1 b : a = b + 1)

p_processors_induction: Prove processors_inductioa {m .-b@P2} from

general_induction {p *- prop, d *- n, d2 *- m},

rcax:hability {a *-- d:@P1}

p_well_founded: Prove well_foundc_l {measure .- (A k -. itat: k)}

p_reachability: Prove reachability {b .- if a = 0 then 0 else a - I end if}
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End

task_model: Module

(* This module introduces an interpretation for a basic task-oriented

ntyle of computation state. It is common to both the continuous

voting and cyclic voting interpretations. *)

Using rcp_defs, sets[processors], cardinality[processors], nat_inductions

Exporting all with rcp_defs, sets[processors], eardinality [proees,_ors]

Theory

p,i,j: Var processors

k, I, q: Vat nat

u: Var inputs

A: Vat set[processors] (* Basic definitions for schedules *)

maj_condition: function[set[processors] -- heel] =

( A A: 2 * card(A) > card(fullset[processors]))

schedule_length: nat (* Number of frames in schedule cycle *)

schedule_length_ax: Axiom schedule_length > 0

control_state: Type from nat with (A k : k < schedule_length)

K, L: Var control_state

nod_plus: function[control_state,control_state --_ control_state] =

( A K, L --, control_state :

if K + L _> schedule_length

then h" + L - schedule_length

else K + L

end if)

mod_minus: function[control_state, control_state ---- control_state] =

( 2 I(,L _ control_state:

if K > L then K - L else schedule_length- L + K end if)

,ram_cells:nat

num.cells_ax: Axiom nun_cells > 0

cell:Type from nat wlth (A k :k < nun_cells)

ceil_state:Type

cell_array: Type = array [cell] of cell_state

c, d, e: Vat cell

H: Var nat

C, D: Var cell_array

(* Task schedule concepts. Each cell occupies a unique place in the

schedule, being computed only once per schedule cycle. *)

cell_frame:function[cell-- control_state](* scheduled frame of cell *)

cell_subframe: function[cell-_nat] (* scheduled subframe of cell *)

sched_cell:function[control_state,nat--* cell](* cell of frame, subframe *)

num_subframes: function[control_state-_nat] (* subframes for this frame *)

(* Well-formedness axioms constraining these functions *)

cell_frame_ax: Axiom c = sched_cell(h', k) D cell_frame(c) = K

cell_subframe_ax: Axiom c = sched_cell(K, k) _ cell_subframe(c) = k
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sched_cell_ax: Axiom

tf = cell_frame(c) ^ k = cell_subframe(c) D sched_cell(K, k) = c

num_subframes_ax: Axiom

K = cell_frame(c) D cell_subframe(c) < nnm_subfranles(h')

(* Processor state definition *)

Pstate: Type = Record control : control_state,

cells : cell_array

end record

null_cell_array: cell_array (* default value *)

initial_proc_state: Pstate (* asmmes each processor begins identically *)

MB: Type is Pstate

MBvc_: Type = array [processors] of MI|

MBmatrix: Type = array [processors] of MBvec

iv: Var MBvec

h: Vat MBmatrix

us, ps, A', Y: Vat Pstate

cell_array_equah Axiom (¥ c : C(c) = D(c)) D C = I)

Pstate_equal: Axiom (X.colmtrol = Y.control A X.cells = Y.cells) D X = Y

(* Interpretations for task-related functions *)

succ: function[control_state -* control_state] =

( A If -. control_state :

if K + I < schedule_length then K + 1 else 0 end if)

fk: function[Pstate -. control_state] == (), ps : ps.control)

ft: function[Pstate, cell -- cell_state] == (_ ps, c: ps.cells(c))

(* Functions modeling task execution *)

exec_task: function[inputs, control_state,cell_array, nat --* cell_state]

exec_measure: function[inputs, control_state, cell_array, nat --4 nat] ==

(_a,K,C,k : k)

exec: Recursive function[inputs, control_state, cell_array, nat

-- cell_array] =

( A a, K,C,k :

ifk=O

then C

else exec(u, h',C, k - I)

with [(sched_cell(K, k - 1)) :=
exec_task(u, K, exec0,, If, C,k - I),k - i)]

end if)

by exec_mea._urc

f_: function[inputs, Pstate --, Pstate] =

( X a, ps: ps with [(control) := succ(ps.control),

(cells) := exec(a, ps.control,

ps.cetls, num_subframes(ps.control))])

f_: function[Pstate--_ outputs] (* actuator output *)

(* Axioms to be satisfied by the generic application *)

succ_ax: Formula fA.(f,.(u, ps)) = sncc(fk(ps))
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components_equal: Formula fk(X) = fk(Y) A (V c: .It(X, c) = f, ('}", c)) D X = Y

(* Support letma8 *)

succ_le_plus: Lemma succ(K) <_ K + 1

rood.minus_zero: Lemma mod_minus(/f, L) = 00 K = L

mod_minus_succ: Lemma mod_minus(succ(K), L) = sm:c(mod_nlinus(h', L))

rood_minus_plus: Lemma succ(l¢) ¢ L D mod_ndnus(succ(h'), L) = mod_mim,s(K, L) + 1

exec_element: Lemma

exec ( u, K, C, num _subftames (K)) (c)

-- if celLframe(c) = K

then exec_task(u, K, exec{tt, K, C, cell_subframc{c)), ccll_subframe{c))

else C(c)

end if

Proof

p_succ_ax: Prove succ_ax froln .if

p_components_eql,al: Prove components_equal {c _--c(_pl} from

cell_array_equM {C ,--X.cells, D ,---Y.cells},Pstatc_equal

p_succ_le_plus:Prove succ_le_plusfrom succ

p_mod_minas_zero: Prove rood_minus_zero from rood_minus

p_mod_minus_succ: Prove mod_minus_succ fi-om

mod_minus {/f .- succ(K)}, rood_minus, succ {It" .- rood_minus(K, L)}, succ

p_mod_minus_plus: Prove rood_minus_plus from

mod_minus {h" .-- succ(K)}, ,nod_minus, succ

exe_prop: function[inpnts, controi_state, celLarray, celi. t,at

function[nat-, bool]] =

(Au, K,C,c,k:

( A q : celi_subframe(c) = k A q < num_subframcs(K)

2) exec(u, K, C, q)(c)

= if k < q A cell_frame(c) = K

then exec_task(u, K, cxec(n, K, C, k), k)

else C(c)

end if))

exe_base: Lemma exe_prop(u, h', C, c, k)(0)

exe_ind_l: Lemma exe_prop(u, h', C, c, k)(q) A celLsubframe(c) = q

D exe_prop(u, K, C, c, k)(q + 1)

exe_ind_2: Lemma exe_prop(n, 1¢',C, c, k)(q) A cell_subframe(c) _ q

exe_prop(u, K, C, c, k)(q + 1)

p_exc_base: Prove exe_base from exe_prop {q .- 0}, exec {k .- 0}

p_exe_Jnd_ 1: Prove exe_ind_ 1 from

exe_prop {q .- q},

exc_prop {q .-- q + 1},

cxec {k_q+l},

schcd_ccll_ax {k _ q},

ccll_frame_ax {k ,-- q},

I_ II ITI.SU I)fralllCS_ ax
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p_exe_ind_2: Prove exe_ind_2 from

exe_prop {q _ q},

exe_prop {q _- q + 1},

exec (t _- q + 1},
cell_frame_ax {k *- q},

cell_subframe_ax {k ,-- q},

nu m.su b frames_ax

p_exec_elemcnt: Prove exec_element from
nat_induction

{p ,-- exe_prop(u, K, C, c, ceU_subframe(c)),
n2 *---num_qubframes(K)},

exe_prop {q ,-- num_subframes(K), k *--cell_subframe(c)},

exe_base {t ,-- cell_subframe(c)),

exe_ind_ I {q _ ,,1 _pl, /; *- cell_subframe(c)},

exe_ind_2 {q _ nl_pl, t *-- cell_subframe(c)},
num_subframes_ax

End

cont_voting: Module
(* Folloving is the interpretation for the continuous voting scheme.

Using task_model, nat_inductions

Exporting all with task_model

Theory

us, ps, X, Y: Var Pstate

p, i, i: Var processors

k, i,q: Var nat

u: Var inputs
u,: Var MBvec

h: Var MBmatrix

A: Var set[processors]
c, d, e: Var cell
cs: Var cell_state

K: Var control_state

H: Var nat (* Najorlty functions *)

k_maj: function[MBvec --* control_state]

k_maj.ax: Axiom ( 3 A :

maj_condition(A) ^ (Vp: p E A Z) w(p).control =/())

k_maj(w) = K

t_maj: function[MBvec, cell ---, cell_state]

t_maj_ax: Axiom (3 A :

maj_condition(A) ^ (¥ p: p E A _ ((w(p)).cellsc) = cs))

t_maj(w, c) = cs

cell_measure: functioa[MBvec, nat _ nat] == (_ w, k: k)

.)
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ceU_maj: Recursive fimction[M Bvec, nat -- cell_array] =

( )_ w, k : if k = 0 V k > num_cells
then null_cell_array

else cell_maj(w, k - 1)

with [(k - 1) := t_maj(w, k - 1)]

end if) by cell_measure

(* Interpretations for voting-related functions *)

f,: fuaction[Pstate --_ MB] == (_ ps: ps)

[_: function [Pstate. MBvec -. Pstate] =

( _ ps, w: ps with [(control) := k_maj(w), (cells) :=
cell_maj(w, num_cells)])

rec: fnnctio,l[cell, control_state, nat -- bool] == (A c, h', [I : II > 2)

dep: functlon[cell, cell, control_state -- bool] == ( A c, d, If : false)

recovery_period_value: Axiom recovery_period = 3

(* Definitions derived frol uninterpreted functions *)

dep_agree: function[cell, control_state, Pstate, Pst;tte -_ bool] =

(Ac, K,X,Y : (Vd: dep(c,d, K) D ft(X,d) = f,(Y,d)))

w_condition: function[set[processors], MBvec, Pstate -. bool] =

(X A, u,,ps: (Vp: p E A D ,v(p) = f.(ps)))

(* Axioms to be satisfied by the generic application *)

full_recovery: Formula H _> recovery_period D tee(c, K, 11)

initial_recovery: Formula tee(c, K, ll) 2) I! > 2

dep_recovery: Formula tee(c, succ(K), lI + 1) A dep(c, d, K) 2) tee(d, K, lI)

control_recovered: Formula

maj_condition(A) A(V p: p E A D w(p) = f.(p._)) 2) fk(f.(Y, w)) = fk(pS)

cell_recovered: Formula

maj_condition (A)

A (V p : p 6_ A 2) w(p) = f.(A(u, ps)))
^/k(X) = /f ^/k(ps) = K ^ dep_agree(c, l<,X, ps)

ft (f_(fc(u, X), to t, c) = ft(f_(u, ps), c)

vote_maj: Formula

maj_condition(A) ^ (Vp : p E A 2) wO,) = f.(ps)) 2) f,,(ps, u,) = ps

(* Support lesmas *)

cell_maj_ele, ment: Lemma cell_maj(w, num_cclls)(c) = t_maj(w, c)

f_v_components: Lemma fk(fo(ps, w)) : k_maj(w) A ft(/,,(ps, w), c) = t_maj(u,, c)
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Proof

p_full.recovery: Prove full_recovery from recovery_period_value

p_initiaLrecovery: Prove initial_recovery

p_dep_recovery: Prove dep_recovery

p_control_recovered: Prove control_recovered {p ,- p_pl } from

k_maj_ax {g .- ps.control}, f_ {ps .-- Y, to .- to}

p_cell_recovered: Prove cell_recovered {p +-- p_l)l }frotn

t_maj_ax {ca .- ((f_.(u, ps)).cellsc)},

fc {ps ,-- X},

fc,
fo {is .- A(u, x), to _- w},
celi_maj_elemeat

p_vote_maj: Prove vote_maj {p .- pC_p4} from

components_equal {X *-- f_(ps, tv), Y .- ps},

k_maj_ax {K *-- ps.control},

t_maj_ax {cs .-- [_(.cellscOpl), c .-- c_.pl},

w_condi tion,

w_condition {p .- pLOp2},

w_condition {p .-- p@Dp3},

f_v_components {c ,-- c_pl }

cme_prop: function[MBvec, cell -- h, nction[nat --+ bool]] =

( )_to, e : ( )_q :
cell_maj(w, q)(c)

_. if c < q A q _< hum_cells

then t_maj(to, c)

else null_cell_array(c)

end if))

cme.base: Lemma cme_prop(to, c)(0)

cme_ind_l: Lemma cme_prop(w, c)(q) ^ c = q D cme_prop(w, c)(q + l)

cme_ind_2: Lemma cme_prop(w, c)(q) A c # q D cme_prop(to,c)(q + 1)

p_cme_base: Prove cme_base from cme_prop {q +-- 0}, cell_maj {k +- 0}

p_cmeind_l: Prove cme_ind_l from

cme_prop {q _-- q}, cme_prop {q _- q + 1}, cell_maj {k _- q + 1}

p_cme_ind_2: Prove cme_ind_2 from
cme_prop {q .-- q}, cme_prop {q .-- q + 1 }, cell_maj {k +-- q + I}

p_cell_maj_element: Prove cell_maj_element from

nat_induction {p *-- cme_prop(to, c), n2 ,--- hum_cells},

cme_prop {q ,-- num_ceUs},

cme_baae,

cme_ind_l {q ,-- nt_pl},

cme_ind_2 {q .- nl@pl}

p_Lv_components: Prove Lv_components from f_ , cell_maj_clement

End
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cyclic_voting: Module
(* Following is the interpretation for the cyclic voting scheme.

Using task_model, nat_inductions

Exporting _1 with task_model

Theory

us, ps, X, Y: Var Pstate

p, i, j: Var processors

k, 1, q: Vat nat

u: Vat inputs

u,: Vat MBvec

h: Vat MBmatrix

A: Vat set[processors]

c, d, e: Var cell

cs: Var cell_state

K, L: Vat control_state

1t: Var nat

C, D: Vat cell_array

cell_fa: Type is function[cell ---. cell_state]

cfn: Var cell_fn (* Majority functions *)

k_maj: function[MBvec ---, control_state]

k_maj_ax: Axiom ( 3 A :

maj_condition(A) A (¥ p: p E A 3 w00.c0ntrol = h'))

D k_maj(w) = i(

t_maj: function[MBvec, cell --, cell_state]

t_maj_ax: Axiom (3 A :

maj_condition(A) A (Vp : p • A D ((w(p)).cellsc) = cs))

2) t_maj(w, c) = cs

cell_measure: function[cell_re, control_state, cell_array, nat -- nat] ==

(), cfn, K, C, k : k)

cell.apply: Reeuraive function[celLfn, control_state, cell_array, nat

--+ cell_array] =
( A cfn, K, C, k :

if k = 0 v k > num_cells

then C

clair g = succ(cell_frame(k - 1)1

then cell_apply(cfn,/f, C, k - 1)

with [(k - 1) := cf,,(k - l)]
else cell_apply (cfn, lf, C, k - 1)

end if)
by cell_measure

(* Interpretations for voting-related functions *)

f_: function[Pstate. ---. MB] =

( J_ ps : ps with [(control) := ps.control, (cells) :=

cell_al,ply((A c : ps.cells(c)),

ps.coutrol,

null_cell_aa'ray,

,,urn_cells)l)

*)
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f_: function[Pstate, MBvec ---. Pstate] =
()_ ps, to : ps with [(control) := k_maj(w),

(ceils) :-- cell_apply(( _ c : t_maj(u,, c)),

ps.control,

ps.cells,

num_cells)])

rec: function[cell, control_state, nat _ heel] =

(._c, lf, ll : li

> 1 + ( if K = cell_frame(c)

then schedule_length

else mod.aninus(K, cell_frame(c))

cad if))

dep: function[cell,cell, control_state --. bool] =

( ._ c, d, K : cell_frame(c) _ K A c = d)

recovery_period_v',due: Axiom recovery_period = schedule_le,kgth + 2

(* Definitions derived from uninterpreted functions *)

dep_agree: function [cell, control_state, Pstate, Pstate --_ bool] =

(A c, tf, X,Y: (Vd: dep(c,d, K) :) f,(X,d) = f,(Y,d)))

w_condition: function[set[processors], MBvec, Pstate -. heel] =

(A A,w, ps: (Vp: p E A D w(p) = f.(ps)))

(* Axiole to be satisfied by the generic application *)

full_recovery: Formula H _> recovery_period :) tee(c, K, I!)

initial_recovery: Formula tee(c, K, H) D 1I > 2

dep_recovery: Formula rec(c, succ(K), 11 + 1) A dep(c,d, K) D rec(d, If, ll)

control_recovered: Formula

maj_condition(A) A (Vp: p E A D w(p) =/._(ps)) :) A(f.(Y,w)) = A(ps)

ceil_recovered: Formula

maj.condition (A)

^ ( Vp: p E A _ w(p) = f_(A(u, ps)))

A .fk(X) = K A fk(ps) = K A dep_agree(c, K, X, ps)

f,(A(A(u, .¥), w), c) = f,(fc(u, ps), c)

vote_maj: Formula

maj_condition(A) ^ (Vp: p E A _ to(V) = f,(ps)) D f_(ps,u,) = ps

(* Support :l.emaas *)

cell_apply_element: Lemma

cdl_apply(cfn, K, C, num_cells)(c)

= if K = suet(cell_frame(c)) then cfn(c) else C(c) end if
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f_s_components: Lemma
K = ps.control D fk(f,(ps)) = [(

A f,(A(ps), c)

= ifsucc(cell_frame(c))= K

then ps.ceils(c)

else null_cell_array(c)

end if

f.v_components: Lemma

fh(f_(ps, w)) = k_mxj(w)

A j't(A(ps, w), c)

= if succ(cell_frame(c)) = ps.control

then t_|uaj(w, c)

else ps.cells(c)

end if

Lc_uncomputed_cells: Lemma
cell_frame(c) =# X.control D A(u, X).cells(c) = X.cells(c)

Proof

p_full_recovery: Prove full_recovery from

rec,
recovery_period_value,

control_st ate_invariant ::

{control_state_var .-- rood_minus(K, cell_frame(c@pl))}

p_initlal_recovery: Prove initial_recovery from

rec_

schedule_length-ax,
mod_minus_zero { L ,- cell_frame(c@pl)},

nat_invariant {nat_vat ,- mod_minus(K, cell_frame(c_pl))}

p_dep_recovery: Prove dep_recovery from

re_ {K -- s.cc(K), U .- n + _},
dep,

rec {c .-- d},
control_state_invariant {control_state_var *-- mod_minus(K, cell.frame(c))},

rood_minus_plus {L _-- cell_frame(c)}

p_control_recovered: Prove control_recovered {p .-p@pl} from

k_maj_ax {K ,-- ps.control}, f,, (ps .--- Y, w 4---to}, f,

p_ceil_recovered: Prove cell_recovered {p 4---pQpl } from

t_maj_ax {cs *-- ((fs(&(u, ps))).cellsc)},

dep_agree {Y _-- ps, d _-- c},

dep {d _ c},
f_s_components {ps _-- fc(U, lXS), K .- (f_(u, X)).control},

f_c_uncomputed_cells {X ¢-- ps},

f_c_uncomputed_cells,

f¢ {ps _--X},

A,
f_v_componet, ts {ps *-- A(u, X)}
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p_vote.maj: Prove vote_maj {p .--- p@p4} from

components_equal {X _ f_(ps, w), Y .- ps},

k_maj_ax {K *- ps.control},

t_maj_ax {cs *-- ps(.ceUsc@pl), c _-- c_pl},

w.condition,

w_condition {p .-- p@p2},

w_condition {p ,-- p_p3},

A,
ceil.apply_element

{,:r,, .-- ( A c: p._.c<,ils(c)),

c *-- cL_pl,

K *-- ps.control,

(7 _ null_cell_array},

f_v_components {c .-- c@pl}

cae_prop: function [cell_fn, control_state, cell_array, cell

--* function[nat -. bool]] =

(a cfn, K,C,c:

( k q : cell_apply(cfn, K,C, q)(c)

= if c < q ^ q < num_cells ^ K = succ(cell_frame(c))
then efn(c)

else C(c)

end if))

cae_ba-_e: Lo.lllma cae_prop(cfn, K, C, c)(0)

cae_iud_ I : Lemma cae_prop(cfit, K, C, c)(q) A c = q

2) cae_prop(cfn, K, C, c)(q + 1)

cae_ind_2: Lemma cae_prop(cf, i, K, C, c)(q) A c # q

D cae_prop(cfn, K, C. c)(q + 1)

p_cae_base: Prove cae_base from cae_prop {q ,--- 0}, cell_apply {k ,-- 0}

p_eae_ind_l: Prove caelnd_l from

eae_prop {q ,-- q}, cae_prop {q .--- q + 1}, cell_apply {k *---q + i}

p_eaeind_2: Prove cae_ind_2 from

cae_prop {q ,--- q}, cae_prop {q .--- q + I}, cell_apply {k ,--- q + 1}

p_cell_apply_element: Prove cell_apply_element from

nat_induction {p ,--- cae_prop(cfn, K, C, c), n2 ,--- num_cells },
eae_prop {q .-- nnm_ceUs},

cae_base,

cae_ind_l {q .- nl_pl},

cae_ind_2 {q _ n]_pl}

p_Ls_components: Prove f.s_components from

/,,
cell_apply_element

{cfn ,--- ( ,_ c : ps.cells(c)),

K *-- ps.control,

C _-- null_cell_array}

p_f.v_components: Prove f_v_components from

f_,
cell_apply_element

{cfn .- ( A c: t_maj(,v, c)),

K ,- ps.control,

C' _ ps.cdls}
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p.f_c_uncomputed_cclls: Prove f_c_uncomputcd_ccils from

• ]'c {ps ,-- .¥}, exec_element {C .-- X.cells, I( .-- .\'.co,,i.rol}

End
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Appendix C

Results of Proof Chain Analysis

The following pages were obtained from Elndm using tin(: proof-dlain analyzer command (M-x apes) applied to tile

module top.

Terse proof chains for module top

Use of the formula

RSto_US.frame_commutes

requires the following Tees to be proven

RS_to_US_tcc.reachable_in_n_TCC1

RS_to_US_tcc.reachablo_in_nTCC2

Formula RS_to.US_tcc.reachable_in_n_TCC2 is a termination TCC for

DA_to_DS.reachable_in_n

Proof of

RS_to_US_tcc.reachable_in_n_TCC2

must not use

DA_to_DS.reachable_in_n

Use of the formula

rcp_defs.recovery_period_ax

requires the folloeing TCCs to be proven

rcpdefs_tcc.processors_TCCl

rcp_defs_tcc.proc_plus_TCCl

rcp_defs_tcc.processors_induction_TCCl

rcp_defs_tcc.processors_induction_TCC2

rcp_defs_tcc.p_reachability_TCCl

Use of the formula

cardinality[rcp_defs.processors].card_empty

requires the folloeing assumptions to be discharged

cardinality[rcp_defs.processors].finite

Use of the formula

DS_to_RS.frams_commutes

requires the folloeing TCCs to be proven

DS_to_RS_tcc.ss_update_TCCl

DS_to_RS_tcc.ss_update_TCC2

DS_to_RS_tcc.ss_update_TCC3

DS_to_RS_tcc.MBmatrix_cons_TCC!

Formula DS_to_RS_tcc.ss_update_TCC3 is a termination TCC

for DA_to_DS.ss_update

Proof of

DS_to_RS_tcc.ss_update_TCC3

must not use

DA_to_DS.ss_update

Formula DS_to_RS_tcc.MBmatrix_cons_TCCl is a terlination TCC for

DA_to_DS._Bmatrix_cons

Proof of

DS_to_RS_tcc.NBmatrix_cons_TCCl

must not use

DA_toDS.MBmatrix_cons
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Useof the formula
noetherian[rcp_defs.proc_plus, rcp_defs.lessp].general_induction

requires the folloeing assumptions to be discharged

noetherian[rcp_defs.proc_plus, rcp_defs.lessp].eell_founded

Use of the formula

DS_support_proof.sll3_prop

requires the following TCCs to be proven

DS_supportproof_tcc.p_sll3_base_TCCl

DS_support_proof_tcc.p_sll3_ind_TCCl

DS_support_prooftcc.p_support_13_TCCl

Use of the formula

DS_map_proof.mll_prop

requires the folloving TCCs to be proven

VS_map_prooftcc.p_mll_base_TCCl

VS_map_proof_tcc.p_m11_ind_TCCl

DS_map_proof_tcc.p_map_1_TCCl

Use of the formula

DAto_DS.phase_commutes

requires the folloeing TCCs to be proven

DA_to_DS_tcc.ss_update_TCCl

DA_to_DS_tcc.ss_update_TCC2

DA_to_DS_tcc.ss_update_TCC3

DA_to_DS_tcc.NBlatrix_cons_TCCl

DA_to_DS_tcc.reachable_in_n_TCC1

DA_to_DS_tcc.reachable_In_n_TCC2

Formula DA_to_DS_tcc.ss_update_TCC3 is a termination TCC

for DA_to_DS.ss_update

Proof of

DA_to_DS_tcc.ss_update_TCC3

must not use

DA_to_DS.ss_update

Forlula DA_to_DS_tcc.NBmatrix_cons_TCCl is a termination TCC for

DA_to_DS.NBmatrix_cons

Proof of

DA_to_DS_tcc.NBmatrix_cons_TCCl

must not use

DA_to_DS.NBmatrix_cons

Formula DA_to_DS_tcc.reachable_in_n_TCC2 is a termination TCC for

DA_to_DS.reachable_in_n

Proof of

DA_toDS_tcc.reachable_in_n_TCC2

must not use

DAto_DS.rsachable_in_n

Use of the formula

DA_map_proof.mll_prop

requires the following TCCs to be proven

DA_map_proof_tcc.p_mll_base_TCC1

DA_map_proof_tcc.p_mll_ind_TCC1

DA_map_prooftcc.p_map_l_TCC1
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Use of the formula

Dl.broadcast_prf.rtp4

requires the folloging TCC8 to be proven

DA_broadcast_prf_tcc.p_br8_TCC1

Use of the forlula

clkmod.in_R_interval

requires the folloeing TCCs to be proven

clkmod_tcc.half_TCCl

clkmod_tcc.Rho_TCC1

clknod_tcc.Corr_TCC1

clknod_tcc.nun_good_clocks_TCC1

clkmod_tcc.nun_good_clocks_TCC2

clkmod_tcc.nul_good_clocks_TCC3

clknod_tcc.nun_good_clocks_TCC4

clkmod_tcc.nungood_clocks_TCC5

clkmod_tcc.CS_TCC1

Formula clkmodtcc. Corr_TCC1 is a teruination TCC for clkmod. Corr

Proof of

clkmod_tcc.Corr_TCC1

must not use

clkmod. Corr

Formula clkmod_tcc.nun_good_clocks_TCC4 is a termination TCC for

clkmod.nun_good_clocks

Proof of

clkmod_tcc.nun_good_clocks_TCC4

must not use

clkmod.nun_good_clocks

F_rmula clkmod_tcc.nuu_good_clocks_TCC5 is a termination TCC for

clkmod.nun_good_clocks

Proof of

clknod_tcc.nun_good_clocks_TCC5

must not use

clknod.nulgoodclocks

Use of the fornula

DA_invariants.state_invariant

requires the follouing TCCs to be proven

DA_invariants_tcc.Corr_lem_TCC1

Use of the formula

DA_support_proof.sllS_prop

requires the following TCCs to be proven

DA_support_proof_tcc.p_sll3_base_TCCl

DAsupportproof_tcc.p_s113_ind_TCCl

DA_support_proof_tcc.p_support_13_TCCl

DA_support_proof_tcc.p_s115_ind_TCCl

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are:

DA.all_duratiorm

DA,broadcast_duration
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DA.broadcast_duration2
DA.pos.durations
RS_majority.maj_ax

cardinality[EXPR].card_empty

clkmod.CO

clkmod.Cl

clkmod. C2

clkmod.Theorem_l

clkmod.Theorem_2

clkmod.adj_always_pos

generic_FT.cell_recovered

generic_FT.components_equal

generic_FT.control_recovered

generic_FT.dep_recovery

generic_FT.full_recovery

generic_FT.initial_recovery

generic_FT.succ_ax

generic_FT.vote_maj

multiplication.mult_non_neg

nat_inductions.nat_induction

noetherian[EXPR, EXPR].general_induction

rcp_defa.processors_exist_ax

rcp_defs.recovery_periodax

sets[EXPR].extensionality

Total: 26

The definitions and type-constraints are:

DA.N~da

DA.N_da_broadcast

DA.J_da_compute

DA.__da_sync

DA.N_da_vote

DA.broadcast_received

DA.clock_advanced

DA.da_rt

DA.enough_hardware

DA.initial_da

Dl.maj_gorklng

DA.working_proc

DA.working_set

DA_invariants.cum_delta_val

DA_invarlants.lclock_eq

DA_invariants.lclock_val

DA_invariants.nf_clk8

DA_invariants.state_invariant

DA_invarianta.state_invariant_to_n

DA_lelmas.hidel

DA_map_proof.ml1_prop

DA_map_proof.ml2_prop

DA_map_proof.m14_prop

DA_aupport_proof.sliS_prop

DA_to_DS.DAmap

DA_to_DS.reachable

DA_to_DS.reachable_in_n

DA_to_DS.ss_update

DS.N_ds

DS.N_ds_broadcast

DS.N_da_compute
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DS.N_ds_sync

DS.N.ds_vote

DS.allowable_faults

DS.broadcast_received

DS.frame_N_ds

DS.initial_ds

DS.maj_working

DS.workins_proc

VS.eorking_set

DS_IeMas .half_frame_N_ds

DS_leJlas. quarter_frame_N_ds

DS_map_proof. ml 1 _prop

DS map_proof, ml2_prop

DS_support_proof.sll3_prop

DS_to_RS,DSmap

DS_to_RS.NBmatrix_cons

DS_to_RS.good_values_sent

DS_to_RS.is_new_proc_Btate

DS_to_RS.ss_update

DSto_RS.voted_final_state

RS.N_rs

RS.alloeable_faults

RS.good_values_sent

RS.initial_rs

RS.maj_.orking

RS.voted_final_state

RS.working_proc

RS.working_set

RS_invariants.state_invariant

RS_invariants.state_invariant_to_n

RS_leamas.ce11_recovery

RS_le--as.control_recovery

RS_lemias.state_rscovery

RS_lem|as.working_majority

RS_majority.maj_exists

RS_to_US.RSmap

RSto.US.reachable

RS_to_US,reachable_in_n

US.N_us

US.initial_us

absmod.abs

clkmod.Corr

clkmod. S1

clkmod.SIC

¢lkmod. S2

clkaod.T_sup

clkmod.snough_clocks

clkmod.goodclock

clkmod.in_Rinterval

¢lkmod.nonfaulty_clock

clkmod.num_good_clocks

¢lkmod.rt

generic_FT.dep_agree

gsneric_FT.maj_cond£tion

multiplication.mult

rcp_defs.distinct_phases

rcp_defs.member_phases

rcp_defs.next_phase
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rcp_defs.prev_phase
aets[EXPR].elpty

Total: 91

The formulae used are:

Db_broadcastprf.brl

DA_broadcastprf.brla

DA_broadcastprf.br2

DA_broadcast_prf.br3

DA_broadcastprf.br3_aa

DA_broadcast_prf.br4

DAbroadcast_prf.br5

DA_broadcast_prf.br6

DA_broadcastprf.br7

DA_broadcastprf.br8

DA.broadcast_prf.br9

DA_broadcastprf.int5

DA_broadcast_prf.rtpO

DA_broadcast_prf.rtpOa

DA_broadcastprf.rtp1

DA.broadcast_prf.rtp2

DA_broadcast_prf.rtp3

DA.broadcast_prf.rtp4

DA_broadcast_prf.rtp4a

DA broadcast prf.rtp4b

DA_broadcast_prf.rtp5

DA_broadcastprf.rtp6

DA.broadcast_prf.rtp7

DA_broadcast_prf_tcc.p_br8_TCCl

DA_intervals.br_int

DA_interva/s.intO

DA_intervals.intl

DA_intervals.intla

DA_intervals.int2

DA_intervals.int2a

DA_intervals.int3

DA_intervals.int4

DA_invarianta.base_state_ind

DA_invariants.cdil2a

DA_invariants.clkval_inv

DA_invariants.clkval_inv_ll

DAinvariants.clkval_inv_12

DA_invar£ants.cum_delta_inv

DA_invariants.cum_delta_inv_ll

DA_invariants.cum_deltainv_12

DA_invariants.cum_delta_inv_14

DA_invariants.da_rt_lem

DA_invariants.enough_inv

DA_£nvarianta.enough_inv_11

DA_invariants.enough_inv_12

DA_invariants.ind_atateind

DAinvariants.lclock_inv

DA_invariants.lclock_Inv_ll

DA_invariants.lclock_inv_12

DAinvariantsolclock_inv_12b

DAinvariants.lclock_inv_12c

DA_invariants.lclock_inv_13

DA_invariants.lclock_inv_14
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DA_invariants. nf clk_inv

DA_invarlants.nfclk_inv_11

DA_invariants. nfclk_Inv_12

DA_invariants. rtl 1

DA_invariants. state_induction

DA_ invariants_tcc. Corr_lem_TCC 1

DA_lemmas. ELT

DA_lemmas. corn_broadcast_ 1

DA.le|mas. corn_broadcast_2

DA_lemmas. corn_broadcast_3

DA_lemmas. corn_broadcast_4

DA_lemmas. com_broadcast_5

DA _ 1 eamas, com_sync_ 1

DA_le_as .com_sync_2

DA_lemmas. com_sync_3

DA_lemmas. com_sync_4

DA_I euas. com_vot e_ 1

DA_lemmas. corn_rot e_2

DA_lemmas. com_vote_3

DA_lemmas. corn_rot e_4

DA_lemmas. earliest_later_time

DA_lemmas. elt_a

DA_lemmas. map. I

DA_ 1 emmas, map_ 2

DA_le-mas. map_3

DA _I aromas, map_4

DA_lemmaa. map_7

DA_lemmas. phase_corn_broadcast

DA_lemmas .phase_corn_compute

DA_lemmas. phase_c om_ Ix 1

DA_lemmas. phase_c ore_ix2

DA_lemmas. phase_ c om_lx4

DA_lemmas .phase_tom_Ix7

DA_le-,,as .pha_e_com_s_nc

DA_I enumas, phase_c ore_vote

DA_ I emmas, support_ I

DA_ lemmas, support_ 14

DA _ 1emmas, support _ 15

DA_lem-as. suppor t_16

DA map_proof, ml I_base

DA _map_proof. ml 1_ ind

DA_map_proof. ml2_base

DA_map_proof. m12_ ind

DA_map_proof. ml4_bass

DA_map_proo f.m14_ Ind

DA_map_proof_t cc .p_map_l_TCCl

DA _map_proof_ tco. p_ml l_base_TCC 1

DA_map_proof_t cc. p_mll_ind_TCC 1

DA_support_proof. sll5_base

DA_suppor t _proof. sl i5_ind

DA_support _proof _tcc .p_sl 13_base_TCC I

DA_support_proof_tc¢ .p_s113_ind_TCC i

DA_support_proof_tc¢. p_al 15_ind_TCC !

DA_support_proof_tcc .p_support_13_TCC 1

DA_to.DS. initial_maps

DA_to_DS. phase_commutes

DA_to_DS_tcc .MBmatrlx_cons_TCC 1

DA to_DS_tcc, reachable_in_n_TCC!
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DA_to_DS_tcc.reachable_in_n_TCC2

DA_to_DS_tcc.ss_update_TCC1

DA_to_DS_tcc.ss_update_TCC2

DA_to_DS_tcc.ss_update_TCC3

DS_IsBas.fc_A_la

DS_lemaas. fc_A_Ib

DS_le_as. fc_A_lc

DS_lenas. fc_A_Id

DS_lennas.fc_A_le

DS_leBas.fc_A_If

DS_lenumas.fc_A_2a

DS_le_as.fc_A_2b

DS_le_as.fc_A_2c

DS_le_as.fc_A_2d

DS_le_as.fc_A_3a

DS_lemmas.fc_A_3b

DS_lewmas.fc A_3c

DS_lenas.fc_A_3d

DS_lenas.nap_l

DS_lenas.nap_2

DS_lenas.nap_3

DS_lemmas.nap_4

DS_lenas.nap_5

DS_leuas.map_7

DS_lemmas. support_l

DS_ i ennas, suppor t_ 10

DS_ lemnas, support_ 11

DS_lenmas.support_13

DS_leanas.support_4

DS_lenas.support_5

DS_le_as.support_6

DS_lenmas.support_7

DS_lemmas.support_8

DS_lemmas.support_9

DS_nap_proof.ml1_base

DS_map_proof.ml1_ind

DS_sap_proof.n12_base

DS_nap_proof.n12_ind

DS_map_proof_tcc.p_nap_l_TCC1

DS_map_proof_tcc.p_nl1_base_TCC1

DS_map_proof_tcc.p_ml1_ind_TCC1

DS_support_proof.s113_base

DS_support_proof.s113_ind

DS_support_proof_tcc.p_s113_base_TCC1

DSsupport_proof_tcc.p_s113_ind_TCCl

DS_support_proof_tcc.p_support_13_TCC1

DS_to_RS.f¢_A

DS_to RS.fc_B

DS_to_RS.fr_con_!

DS to_RS.fr_con_2

DS_toRS.frame_co_utes

DS_to_RS.initial_maps

DS_to_RS_tcc.NBmatrix_cons_TCC1

DS to RS_tcc.ss update_TCC1

DSto_RS_tcc.ss_update_TCC2

DS_to_RStcc.ss_update_TCC3

RS_invariants.base_state_ind

RS_invariants.ind_state_ind
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RS_invariants.maj_vorking_inv

RS_invariants.maj_working_inv_ll

RS_invariants.maj_sorking_inv_12
RS_tnvariants.state_induction

RS_invariants.state_rec_inv

RS_invariants.state_rec_inv_l!

RSinvariants.state_rec_inv_12
RS_invariants.state_rec_inv_13

RS_invariants.state_rec.inv_14

RS_invariants.state_rec_inv_lS

RS_le_as.consensus_prop

RS_lemmas.initial_maj
RSlemmas.initial_maj_cond

aS_lemmas.tnitial_eorktng
RS_lemmas.maj_sent

RS_lemmas.rec_majexists

RS_lemmas.rec_maj_f_c

RS_lemmas.working_set_healthy

RS_to_US.frame_commutes

R__to_US.initial_mapm

RS_to_US_tcc.reachable_In_n_TCC!

RS_to_US_tcc.reachable_in_nTCC2

absmod.abe_geO

absmod.abs_leq

absmod.abs_main

cardinality[rcp_defs.processors].finite

clkmod.sync_thm

clkmod_tcc. C6_TCC]

clkmod_tcc.Corr_TCCl

clkmod_tcc.RhoTCCl

clkmod_tcc.half_TCC!

clkmod_tcc.numgood_clocks_TCCl

clkmod_tcc.num_good_clocks_TCC2

clkmod_tcc.num_good_clocks_TCC3

clkmod_tcc.numgood_clocks_TCC4

clkmod_tcc.num_good_clocks_TCC5

clkprop.GOAL

clkprop.ftlO

clkprop.ftll

clkprop.ftl2

clkprop.ft2

clkprop.ft3

clkprop.ft4

clkprop._t5

clkprop.ft6

clkprop.ft7

clkprop.ft8

clkprop.ftSa

clkprop.ft9

clkprop.nfc_a

clkprop.n_c_lem

generlc_FT.card_fullset

generic_FT.nat_nit

generlc_FT.proc_extensionality

multiplication.dlstrib_minus

multiplication.mult_com

multiplicatlon.multldistribminus

multiplication.mult_leq
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noetherian[rcp_defs.proc_plus, rcp_defs,lessp].well_founded

rcp_defe.processore_induction

rcp_defe.reachability

rcp_defs_tcc.p_reachability_TCC!

rcp_defs_tcc.proc_pltm_TCC!

rcp_defs_tcc.processors_TCCl

rcp_defe_tcc.processors_induction_TCCi

rcp_defetcc.proceeeors_induction_TCC2
Total: 235

The completed proofe are:

DAbroadcast_prf.p_brl

DA_broadcast_prf.p.brla

DA_broadcast_prf.p_br2

DA_broadcast_prf.p_br3

DA_broadcastprf.p,br3_aa

DA_broadcast_prf.p_br4

DA_broadcast_prf.p_br5

DA_broadcastprf.p_br6

DA.broadcut_prf.p_br7

DA_broadcast_prf.p_br8

DA_broadcast_prf.p_br9

DA_broadcaet_prf.p_com.broadcast_5

DA_broadcastprf.p_rtpO

DAbroadcast_prf.p_rtpOa

DA_broadcast_prf.p_rtpl

DA_broadcast_prf.p_rtp2

DA_broadcast_prf.p_rtp3

DA_broadcast_prf.p_rtp4

DA_broadcast_prf,p_rtp4a

DA_broadcastprf.p_rtp4b

DA_broadcast_prf.p_rtp5

DA_broadcast_prf.p_rtp6

DA_broadcmst_prf.p_rtp7

DA_broadcast_prf_tcc.p,brS_TCCi_PRODF

DA_intervals.p_br_int

DA_intervale.p_intO

DA_intervals.p_Int!

DA_intervale.p_intla

DA_intervals.p_int2

DA_intervals.p_int2a

DA_intervale.p_int3

DA_intervale.p_int4

DA_intervals.p_int5

DA_invariants.p_base_state_ind

DA_invarim_ts.p_cdi_12a

DAinvariants.p_clkva1_inv

DA_invariants.p_clkval_inv_l!

DA_invariants.p_clkval_invl2

DA_invariante.p_cuadelta_inv

DA_invariants.p.cum_delta_inv_li

DA_invarlants.p_cum_delta_inv_12

DA_invariants.p_cum_delta_inv_14

DA_invariants.p_da_rt_lem

DA_invariants.p_enough_inv

DA_invariants.p_enough_inv_ll

DA_invariants.p_enough_inv_12

DA_invariante.p_ind_state_ind
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DA_invariants.plclock_inv

DA.invariants.p_lclock_inv_lI

DA_invariants.p_lclock_inv_12

DA_invariants.p_lclock_inv_12b

DA_invariants.p_Iclock_inv_12c

DA_invariants.p_lclock_inv_13

DA_invariants. p_lclock_inv 14

DA_invariants. p_nfclk_inv

DA_ invariants, p_nfclk_inv_l 1

DA_invariants.p_nfclk_inv_12

DA_invariants.p_rt11

DA_invarlants.p_state_induction

VA_invariants_tcc.Corr_lemTCCl_PROOF

VA_map_proof.p_map_l

DA,map_proof.p_map_2

DAmap_proof.p_map_3

DA_map_proof.pmap_4

DAmap_proof.p_map_7

DA_map_proof.p_ml1_base

DA_map_proof.p_m11_ind

DA_map_proof.p_m12base

VA_map_proof.p_m12_ind

DA_map_proof.p_m14_base

VAmap_proof.p_ml4_ind

DA_map_prooftcc.paap_1_TCC1_PROOF

DA_map_proof_tcc.p_ml1_base_TCC1_PROOF

DA_map_proof_tcc.p_mli_ind_TCCl_PROOF

DA_support_proof.p_sll5_base

VA_support_proof.p_s115_ind

VA_support_proof.p_support_1

DA_support_proof.p_support_14

DA_support_proof.p_support15

DA_support_proof.p_support_16

DA_support_proof_tcc.p_sll3_baseTCC1_PROOF

DA_support_proof_tcc.p_s113_ind_TCCl_PROOF

VA_support_proof_tcc.p_support_13_TCCl_PRfOF

DA_tcc_proof.C6_TCCI_PRDOF

VA_tcc_proof.Kho_TCC1_PROOF

DA_tcc_proof.p_s115_ind_TCC1_PROOF

DA_to_DS_tcc.NBmatrix_cons_TCCl_PROOF

DA_to_DS_tcc.reachable_in_n_TCC1_PROOF

VA_to_VS_tcc.reachable_in_n_TCC2_PROOF

VA_to_DS_tcc.ss_update_TCCl_PROOF

DA_to_DStcc.ss_update_TCC2_PROOF

DA_to_VS_tcc.ss_update_TCC3_PROOF

DA_top_proof.p_ELT

DA_top_proof.p_com_broadcast_l

DA_top_proof.p_com_broadcast_2

DA_top_proof .p_com_broadcast_3

DA_top_proof .p_com_broadcast_4

DAt op_proo f. p_com sync_ !

DA_top_proof.p_com_sync_2

DA_top_proof.p_com_syn¢_3

VA_top_proof.p_coe_syn¢_4

VA_top_proof.p_comvote_1

DA_top_proof.p_com_vote_2

DAtop_proof.p_con_vote_3

DA_top_proof.p_comvote_4
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DA_top_proof.p_earliest_later_time

DA_top_proof.p_elt_a

DA_top_proof.p_initial_maps

DA_top_proof.p_phase_com_broadcast

DAtop_proof.p_phase_com_compute

DA_top_proof.p_phase_com_lxl

DA_top_proof.p_phase_com_lx2

DA_top_proof.p_phase_com_lx4

DA_top_proof.p_phase_com_lx7

DA_top_proof,p_phase_com_sync

DA_top_proof.p_phase_com_vote

DA_top_proof.p_phase_co_utes

DS_map_proof.p_map_l

VS_sap_proof.pmap_2

DS_map_proof.p_map3

VS_map_proof.p_aap_4

DS_lap_proof.p_map_5

DS_map_proof.pmap 7

DSmap_proof.p_mll_base

DSmap_proof.p_mll_ind

DS_map_proof.p_ml2_base

DSmap_proof.pml2_ind

DS_aap_proof_tcc.p_aap_l_TCCl_PROOF

DS_map_proof_tcc.p_ml1_base_TCCl_PROOF

DS_map_proof_tcc.p_a11_ind_TCC1_PROOF

DS_support_proof.p_s113_base

DS_support_proof.p_s113_ind

DS_support_proof.p_support_1

DS_support_proof,p_support_10

DS_support_proof.p_support_11

DS_support_proof.p_support_13

DS_support_proof.p_support_4

DS_support_proof.p_support_5

DS_support_proof,p_support_6

DS_support_proof.p_support_7

DS_support_proof.p.support_8

DS_support_proof.p_support_9

DS_eupport_proof_tcc.p_s113_base_TCC1_PROOF

DS_support_proof_tcc.p_s113_ind_TCO1_PROOF

VS_support_proof_tcc.p_support_13_TCOl_PRDOF

DS_to_RS_tcc.NBmatrix_cons_TCCl_PROOF

DS_to_RS_tcc.ss_up<iate_TCC|_PROOF

DSto_RS_tcc.ss_update_TCC2_PROOF

DS_to_RS_tcc.ss_utxiate_TCC3_PROOF

DStop_proof.p_fc_A

DS_top_proof.p_fc_A_la

DS_top_proof.p_fc_A_lb

DS_top_proof.p_fc_A_lc

DS_top_proof.p fc A_ld

DS_top_proof.p_fc_A_le

DS_top_proof.p_fc_A_lf

DS_top_proof.p_fc_A_2a

DS_top_proof.p_fc_A_2b

DS_top_proof.p_fc_A_2c

DS_top_proof.p_fc_A_2d

DS_top_proof.p_fc_A_3a

DS_top_proof.p_fc_A_3b

DS_top_proof.p_fc_A_3c
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DS_top_proof.p_fc_A_3d

DS_top_proof.p_fc_B

DS_top_proof.p_fr_com_l

DStop_proof.p_fr_com_2

DStop_proof.p_frale_conutes

DS_top_proof.p_initial_maps

RS_invar iant s.p_base_stat e_ind
aS_invariants, p_ind_state_ind

ES i nv ar i ant s. p_ma j _working_ inv

RS_invarlants. p_maj_working_inv_l 1

ES invar iant s •p_naj_working_inv_12

RS_invariants.p_state_induction

RS_invariants.p_state_rec_inv

RS_lnvariants.p state rec_inv_ll

RS_invariants.p_state_re¢_inv_12
RS_invar±ants.p_state_rec_inv_13

RS_lnvariants.pstate_rec_inv_14

RS_invariants.p_state_re¢_inv_15
RS_tcc_proof.proc_plus_TCCl_PROOF

RS_tcc_proof.processors_TCCl_PROOF
RS_toUS_tcc.reachable_in_n_TCCl_PROOF

RS_to_UStcc.reachablein_n_TCC2_PROOF

RS_top_proof.p_consensus_prop

RS_top_proof.p_frame_co_utes

RS_top_proof.p_initia1_naj

RS_top_proof.p_initialnaj_cond

ES_top_proof.p_initial_naps

RS_top_proof.p_initial_gorking

RS_top_proof.p_maj_sent

RS_top_proof.p_rec_naj_exists

RStop_proof.p_rec_maj_f_c

RS_top_proof.p_working_set_healthy

absnod.abs_geO_proof

absmod.abs_leq_proof

absnod.abs_main_proof

¢iknod.p_sync_tlm

clknod_tcc. Corr_TCCl_PROOF

clknod_tcc.half_TCCl_PROOF

clknod_tcc.nuJgood_clocks_TCCl_PROOF

clknodtcc.numgoodclocks_TCC2_PEOOF

clknod_tcc.num_good_clocks_TCC3_PROOF

clknodtcc.numsood_clocks_TCC4_PROOF

clknod_tcc.numsood_clocks_TCCS_PEODF

clkprop.p GOAL

clkprop.p_ftlO

clkprop.p_ftll

clkprop.p_ft12

clkprop.p_ft2

clkprop.p_ft3

clkprop.p_ft4

clkprop.p_ft5

clkprop.p_ft6

clkprop.p ft7

clkprop.p_ft8

clkprop.p_ft8a

clkprop.p_ft9

clkprop.p_nfc_a

clkprop.pnfc_lem
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generic_FT.disharge_finite

generic_FT.p_card_fullset

generic_FT.p_nat_nit

generic_FT.p_proc_extensionality

multiplication.distrib_minus_pr

multiplication.mult_com_pr

multiplication.mult_idistrib_mintm_proof

multiplication.mult_leq_pr

rcp_defs.p_processors_induction

rcp_defs.p_reachabi!ity

rcp_defs.p_well_founded

rcp_defs_tcc.p_reachability_TCC1_PROOF

rcp_defs_tcc.processors_induction_TCCl_PROOF

rcp_defs_tcc.processors_induction_TCC2_PROOF

top.pDA_initial_maps

top.p_DA_phase_commutes

top.p_DS_frame_commutes

top.p_DS_initial_maps

top.pRS_frame_commutes

top.p_RS_initialmaps

Total: 241
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